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9. Progressiv R, the" refraction-correct" progressive 
lens

The background 

In the 70's/80's of the last century Rodenstock was ex equo with Essilor one of the leading 
spectacle manufacturers of the world . After the  Varilux invention by Bernard Maitenaz 
Rodenstock marketed the BBGR progressive lens Zoom . This design however was not 
competitive compared to Varilux 2 and moreover the renown of Rodenstock called for an 
own brand.
So G. Guilino and R. Barth started the development of progressive surfaces in Germany  
and their patent US 4 315 673 is one of the most beautiful examples of a progressive 
design constituted by analytical functions.
This surface represents a design which is distinctly softer than Varilux 1, but nevertheless 
distinguishes itself by large viewing zones for far and near vision. As the "refraction correct 
progressive" it was attacking the (inofficial) recommendation on the market, that for 
Varilux 2  the optimum comfort is achieved when the far vision power is corrected by -0.25 
D and parallel to this  the add power is increased by 0.25 D. 

9.1 The coordinate system

Fig 1
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The principal meridian PM is situated in the (yz)-plane of a Cartesian coordinate system 
(x,y,z) and is described by the function Fm(z).  Moving from near vision to far vison z 
increases, the z-axis being tangent to PM in a point in between (for example the center of 
the finished lens where the prismatic effect is measured).

For the analytical description of the horizontal section HS (please note, that we specify the 
horizontal and not the orthogonal section) of the surface the patent uses a cylinder 
coordinate system ( , ), the cylinder axis zc being  parallel to the z-axis in a distance rfρ φ

(radius of curvature in the far reference point).
As we will see in chapter 9.5 the  distance "z axis to cylinder-axis" zzc with value rf gives a 
design with a rather large far vision area (with smaller NV) and a distance rn (radius of 
curvature in the near reference point) gives a large near vision part (with smaller FV). So in 
the patent the surface is defined in an auxiliary cylinder coordinate system with a curved 
cylinder axis a(z), giving a distance zzc close to rf for positive z values and close to rn for 
negative z.  
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⎜⎝
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―――――
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Fig 2
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In chapter 9.4 below we will see that the exponential factor c0 ( here 3) has a strong 
impact on the design softness. 
The relation between the original coordinate system ( , ) and the auxiliary system ( s,ρ φ ρ

), looking in the direction of the z axis, is illustrated  in Fig 2.ψ

9.2 Description of the progressive surface 

s is given by a Fourier series  ρ

＝ρs (( ,ψ z)) ∑
=n 0

∝

bn ((z)) cos (( ⋅⋅n k ((z)) ψ))

where the negative bn are zero because the surface is symmetrical to the z-axis (to avoid 

confusions we choose for the coefficients  the notation bn instead of an as in the patent).

Taking into account only the terms for n=0 and n=1 and requiring that the main meridian 
s (0,z)=fs(z)  is an umbilical line  we get the equationρ

＝ρs (( ,ψ z)) +fs ((z)) ⋅⋅――
1

k ((z))
2

⎛
⎜
⎜⎝

−fs ((z)) ―――――
fs ((z))

2

Fm'' ((z))
⎛
⎝ +1 Fm' ((z))

2 ⎞
⎠

⎞
⎟
⎟⎠

(( −1 cos (( ⋅k ((z)) ψ))))

where we will call  k(z)  the periodicity of the first order Fourier term.

The relation between s, , and according to Fig 1 and 2 is given byρ ρ ψ φ

＝＝x ⋅ρ (( ,φ z)) sin ((φ)) ⋅ρs (( ,ψ z)) sin ((ψ))

＝＝y −rf ⋅ρ (( ,φ z)) cos ((φ)) −a ((z)) ⋅ρs (( ,ψ z)) cos ((ψ))

In their publications and marketing brochures Rodenstock calls the new design the surface 
with variable periodicity. The horizontal sections of Progressiv R are defined  as a periodic 
functions of the cylinder coordinate φ. The periodicity k(z) varies continuously  with the  
position of the horizontal section.
In the patent, column 5, as an example, the periodicity k(z) is given by the following 
expression:  

＝k ((z)) +3 ―――――
7

⎛⎝ +1
⋅−3 (( +z 1.8))⎞⎠



Seite 4

According to the patent the rather low k value 3 for high negative z should provide a large 
near vision zone, the rather high k value 10  for high positive z should guarantee an 
aberration-free far vision area. This will be discussed below.

We will consider two versions of Progressif R, first, one example given in the patent          
US 4 315 673  and second, the product which was sold on the market.

9.3 The patent

9.3.1 The principal meridian 

From the patent we pick out the  design in table  3, columns 7 and 8. The curvature of the 
main meridian for add 3 is given by claim 20 

＝K ((z)) +――
1

8.75
――
0.03

0.525

⎛
⎝ −1 ⎛⎝ +1

⋅−3.09 (( +z 1.82))⎞⎠
−30⎞

⎠

This is the equation for the geometrical curvature , not the optical power. The meridian 
shows stabilized curvature in the far vision as well as in the near vision part. The far vision 
radius is 87.5 mm corresponding to the far vision power of 6 D. In the patent the   
coefficients in the exponential term  depend on the add power. So the transition from the 
stabilized zones into the intermediate section with varying power can be designed more or 
less softly and has so an essential influence on the peripheral astigmatism. 

The main meridian Fm(z) and its first derivative D1Fm(z) are obtained by integration of the 
differential equation for the curvature. 
(In the Rodenstock patent the dimension of length is  given in cm , so we do the 
same in the following calculations).  

Integrating the differential equation for the curvature K(z) of the meridian 

＝――――
Fm'' ((z))

⎛⎝ +1 Fm'
2 ⎞⎠

―
3

2

K ((z)) ＝Fm ((z)) x1 ((z))

＝x1' x2

＝x2' ⋅⎛⎝ +1 x2
2 ⎞⎠

―
3

2

K ((z))
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≔K ((z)) +――
1

8.75
――
0.03

0.525

⎛
⎝ −1 ⎛⎝ +1

⋅−3.09 (( +z 1.82))⎞⎠
−30⎞

⎠

≔D (( ,z X))

X
1

⋅⎛
⎝

+1 X
1

2 ⎞
⎠

―
3

2

K ((z))

⎡
⎢
⎢
⎢
⎢⎣

⎤
⎥
⎥
⎥
⎥⎦

＝X ((z))
x1 ((z))
x2 ((z))

⎡
⎢⎣

⎤
⎥⎦

≔u 0.3723 ≔v 0.3017

≔init
u

v

⎡
⎢⎣

⎤
⎥⎦

u and v are the initial conditions for Fm(z) and D1Fm(z)=Fm'(z) in z=2.5 cm, calculated 
first from a circle with rf=8.75 cm and then iteratively corrected, so that for z=0 Fm(z) 
and D1Fm(z) are zero

≔Zi 2.5
≔Zf −2.5

≔N 100

≔sol AdamsBDF (( ,,,,init Zi Zf N D))

                 z     x1=Fm(z)     x2=Fm'(z)

=sol

2.5 ⋅3.723 10
−1

⋅3.017 10
−1

2.45 ⋅3.574 10
−1

⋅2.952 10
−1

2.4 ⋅3.428 10
−1

⋅2.887 10
−1

2.35 ⋅3.285 10
−1

⋅2.823 10
−1

2.3 ⋅3.145 10
−1

⋅2.759 10
−1

2.25 ⋅3.009 10
−1

⋅2.696 10
−1

⋮

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦
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Calculating the main meridian as a function of z : Fm(z)

Arranging the data in an ascending order of z

≔data =csort (( ,sol 0))

−2.5 ⋅4.83 10
−1

− ⋅4.3 10
−1

−2.45 ⋅4.62 10
−1

− ⋅4.19 10
−1

−2.4 ⋅4.41 10
−1

− ⋅4.08 10
−1

−2.35 ⋅4.21 10
−1

− ⋅3.97 10
−1

−2.3 ⋅4.01 10
−1

− ⋅3.86 10
−1

−2.25 ⋅3.82 10
−1

− ⋅3.76 10
−1

⋮

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

≔Z data
⟨⟨0⟩⟩

≔X1 data
⟨⟨1⟩⟩

≔X2 data
⟨⟨2⟩⟩

≔S1 cspline (( ,Z X1))

≔Fm ((z)) interp (( ,,,S1 Z X1 z))

≔S2 cspline (( ,Z X2))

≔D1Fm ((z)) interp (( ,,,S2 Z X2 z))

≔z , ‥−2.5 −2.4 2.5
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Fig 3
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Fig 4

9.3.2 Geometry and equations  of the progressive surface 

We choose the example presented in table 3 in the columns 7 and 8 of the patent with 
the following definitions

.

≔rf 8.75

≔a ((z))

⎛
⎜
⎜⎝

+―
1

rf

⎛
⎜
⎜⎝
―――――
⎛⎝ +1

⋅3 (( −z 1))⎞⎠
−30

52.5

⎞
⎟
⎟⎠

⎞
⎟
⎟⎠

−1

≔fs ((z)) −a ((z)) Fm ((z))

≔k ((z)) +3 ――――――
7

⎛⎝ +1
(( ⋅−3 (( +z 1.8))))⎞⎠

≔b0 ((z)) +fs ((z)) ⋅――
1

k ((z))
2

⎛
⎝ −fs ((z)) ⋅⋅fs ((z))

2
K ((z))

‾‾‾‾‾‾‾‾‾‾‾‾‾⎛
⎝ +1 D1Fm ((z))

2 ⎞
⎠

⎞
⎠

≔b1 ((z)) −fs ((z)) b0 ((z))

≔ρs (( ,ψ z)) +b0 ((z)) ⋅b1 ((z)) cos (( ⋅k ((z)) ψ))
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≔ρ (( ,ψ z))
‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾

++ρs (( ,ψ z))
2

⋅⋅2 ρs (( ,ψ z)) (( −rf a ((z)))) cos ((ψ)) (( −rf a ((z))))
2

≔φ (( ,ψ z)) atan
⎛
⎜⎝
――――――――――

⋅ρs (( ,ψ z)) sin ((ψ))

+⋅ρs (( ,ψ z)) cos ((ψ)) (( −rf a ((z))))

⎞
⎟⎠

≔xc (( ,ψ z)) ⋅ρ (( ,ψ z)) cos ((φ (( ,ψ z))))

≔yc (( ,ψ z)) ⋅ρ (( ,ψ z)) sin ((φ (( ,ψ z))))

≔x (( ,ψ z)) yc (( ,ψ z)) ≔y (( ,ψ z)) −rf xc (( ,ψ z))

9.3.2.1 Fundamental Forms

Definition of the derivatives 

≔r (( ,ψ z))
x (( ,ψ z))
y (( ,ψ z))

z

⎡
⎢
⎢⎣

⎤
⎥
⎥⎦

≔xψ (( ,ψ z)) ――
d

dψ
x (( ,ψ z))

≔yψ (( ,ψ z)) ――
d

dψ
y (( ,ψ z))

≔rψ (( ,ψ z))
xψ (( ,ψ z))
yψ (( ,ψ z))

0

⎡
⎢
⎢⎣

⎤
⎥
⎥⎦

≔xz (( ,ψ z)) ――
d

dz
x (( ,ψ z))

≔yz (( ,ψ z)) ――
d

dz
y (( ,ψ z))
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≔rz (( ,ψ z))
xz (( ,ψ z))
yz (( ,ψ z))

1

⎡
⎢
⎢⎣

⎤
⎥
⎥⎦

≔xψψ (( ,ψ z)) ――
d

d

2

ψ
2
x (( ,ψ z))

≔yψψ (( ,ψ z)) ――
d

d

2

ψ
2
y (( ,ψ z))

≔rψψ (( ,ψ z))
xψψ (( ,ψ z))
yψψ (( ,ψ z))

0

⎡
⎢
⎢⎣

⎤
⎥
⎥⎦

≔xzz (( ,ψ z)) ――
d

d

2

z
2
x (( ,ψ z))

≔yzz (( ,ψ z)) ――
d

d

2

z
2
y (( ,ψ z))

≔rzz (( ,ψ z))
xzz (( ,ψ z))
yzz (( ,ψ z))

0

⎡
⎢
⎢⎣

⎤
⎥
⎥⎦

≔xψz (( ,ψ z)) ――
d

dz
xψ (( ,ψ z))

≔yψz (( ,ψ z)) ――
d

dz
yψ (( ,ψ z))

≔rψz (( ,ψ z))
xψz (( ,ψ z))
yψz (( ,ψ z))

0

⎡
⎢
⎢⎣

⎤
⎥
⎥⎦
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1.Fundamental Form and unit normal vector

≔E (( ,ψ z)) ⋅rψ (( ,ψ z)) rψ (( ,ψ z))

≔F (( ,ψ z)) ⋅rψ (( ,ψ z)) rz (( ,ψ z))

≔G (( ,ψ z)) ⋅rz (( ,ψ z)) rz (( ,ψ z))

≔No (( ,ψ z)) ―――――――
(( ⨯rψ (( ,ψ z)) rz (( ,ψ z))))
‖‖ ⨯rψ (( ,ψ z)) rz (( ,ψ z))‖‖

2. Fundamental Form

≔L (( ,ψ z)) ⋅rψψ (( ,ψ z)) No (( ,ψ z))

≔M (( ,ψ z)) ⋅rψz (( ,ψ z)) No (( ,ψ z))

≔N (( ,ψ z)) ⋅rzz (( ,ψ z)) No (( ,ψ z))

Principal Curvatures

≔H1 (( ,ψ z)) −+⋅E (( ,ψ z)) N (( ,ψ z)) ⋅G (( ,ψ z)) L (( ,ψ z)) ⋅2 F (( ,ψ z)) M (( ,ψ z))

≔H2 (( ,ψ z)) −⋅E (( ,ψ z)) G (( ,ψ z)) F (( ,ψ z))
2

≔H3 (( ,ψ z)) −⋅L (( ,ψ z)) N (( ,ψ z)) M (( ,ψ z))
2

≔K1 (( ,ψ z)) ――――――――――――――――

⎛
⎝ +H1 (( ,ψ z))

‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾
−H1 (( ,ψ z))

2

⋅⋅4 H2 (( ,ψ z)) H3 (( ,ψ z))
⎞
⎠

⋅2 H2 (( ,ψ z))

≔K2 (( ,ψ z)) ――――――――――――――――

⎛
⎝ −H1 (( ,ψ z))

‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾
−H1 (( ,ψ z))

2

⋅⋅4 H2 (( ,ψ z)) H3 (( ,ψ z))
⎞
⎠

⋅2 H2 (( ,ψ z))
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9.3.2.2 Mean optical power POW  and Astigmatism AST

Due to the special choice of the coordinates ( , ) the principal curvatures are ρ φ

negative. Thus, as the mean optical power in this example is positive, we insert in the 
formula for POW  a minus sign. For the astigmatism this is not necessary, as  K1>K2)

≔POW (( ,ψ z)) ⋅−52.5
⎛
⎜⎝
―――――――
(( +K1 (( ,ψ z)) K2 (( ,ψ z))))

2

⎞
⎟⎠

≔AST (( ,ψ z)) ⋅52.5 (( −K1 (( ,ψ z)) K2 (( ,ψ z))))

Check, that the principal meridian is an umbilical line

≔ψ 0 ≔z , ‥−2.4 −2.2 2.4

=AST (( ,ψ z))

⋅4.17 10
−4

⋅6.98 10
−4

⋅1.58 10
−5

⋅8.5 10
−5

⋅6.41 10
−4

⋅2.57 10
−3

⋅1.12 10
−4

⋅2.24 10
−3

⋅9.4 10
−4

⋅1.06 10
−3

⋅1.88 10
−3

⋮

0

1

2

3

4

5

6

7

8

9

10

 ⋮
24

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

 Lines of constant mean optical power (Isopowerlines )

≔ψmin 0 ≔ψmax ⋅0.11 ≔n 14 ≔i ‥0 n

≔∆ψ ―――――
−ψmax ψmin

n
≔ψ
i

+ψmin ⋅i ∆ψ
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≔zmin −2.6 ≔zmax 2.6

≔∆z ―――――
−zmax zmin

n
≔z
i

+zmin ⋅i ∆z

≔MPOW (( ,ψ z)) ‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖‖

|
|
|
|
|
|
|
|
|
|
|
|

for ∊ |
|
|
|
|
|
|

|

i ‥0 last ((ψ))
‖
‖
‖
‖
‖
‖
‖‖

for ∊ |
|
|
|
|

|

j ‥0 last ((z))
‖
‖
‖
‖
‖
‖

←MPow
,i j

+POW ⎛
⎝

,ψ
i
z
j
⎞
⎠

0.03

←Mz
,i j

z
j

←Mx
,i j

x ⎛
⎝

,ψ
i
z
j
⎞
⎠

return
Mx

Mz

MPow

⎡
⎢
⎢⎣

⎤
⎥
⎥⎦

a 0.03 D increment has been added to make the 9D line shine up in the isopower plot 
of 

≔ISOPOW =MPOW (( ,ψ z))
[15 × 15]
[15 × 15]
[15 × 15]

⎡
⎢
⎢⎣

⎤
⎥
⎥⎦

7
6.5

7.588.5

7

7.5

6.5 6

8

9

5.5

7

5

8.5

6.5

9

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

2.5

-3

-2.5

3

0.5 0.75 1 1.25 1.5 1.75 2 2.250 0.25 2.5

6 6.5 7 7.5 8 8.5 9 9.55 5.5 10
ISOPOW

Fig 5
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 Lines of constant astigmatism (Isoastigmatism plot)

≔ψmin 0 ≔ψmax ⋅0.11 ≔n 14 ≔i ‥0 n

≔∆ψ ―――――
−ψmax ψmin

n
≔ψ
i

+ψmin ⋅i ∆ψ

≔zmin −2.6 ≔zmax 2.6

≔∆z ―――――
−zmax zmin

n
≔z
i

+zmin ⋅i ∆z

≔MAST (( ,ψ z)) ‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖‖

|
|
|
|
|
|
|
|
|
|
|
|

for ∊ |
|
|
|
|
|
|

|

i ‥0 last ((ψ))
‖
‖
‖
‖
‖
‖
‖‖

for ∊ |
|
|
|
|

|

j ‥0 last ((z))
‖
‖
‖
‖
‖
‖

←MAsti
,i j

AST ⎛
⎝

,ψ
i
z
j
⎞
⎠

←Mz
,i j

z
j

←Mx
,i j

x ⎛
⎝

,ψ
i
z
j
⎞
⎠

return
Mx

Mz

MAsti

⎡
⎢
⎢⎣

⎤
⎥
⎥⎦

≔ISOAST =MAST (( ,ψ z))
[15 × 15]
[15 × 15]
[15 × 15]

⎡
⎢
⎢⎣

⎤
⎥
⎥⎦

0.5 1 1.5 2
2.5 33.5 4 4.5 5

5

4.5 43.532.52

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

2.5

-3

-2.5

3

0.5 0.75 1 1.25 1.5 1.75 2 2.250 0.25 2.5

1.5 2 2.5 3 3.5 4 4.50.5 1 5
ISOAST Fig 6
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9.3.3 Analysis of design and calculation

Fig 6 shows a lens design with , as expected, large viewing zones for far and near vision .
The far vision area is particularly free from  aberrations. In the periphery  the 0.5 D 
astigmatism line is bent downwards creating  a strong gradient between far vision and 
progression. The maximum astigmatism value at x=2.5 cm is above 7 D.

 If we now plot  the figures of table 3 of the patent we get Fig 7 and 8

Fig 7

Fig 8
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So the results of our calculations are clearly different from the figures of the patent. 
Particularly striking is the smaller astigmatism-free near vision portion in Fig 8. The 
comments under table 3 indicate that 

＝k ((z)) +3 ―――――
7

⎛⎝ +1
⋅−3 (( +z 1.8))⎞⎠

which we have used in our calculations . For strong negative z, this expression approaches
k(z)≈3, which means a large NV-part in accordance with the results in Fig 6.

To calculate a design as in Fig 7 and 8 we have to start from a k-value in the upper part of 
the discussed k-range between 3 and 10. So for example the k(z)-function

＝k ((z)) +9 ―――――
1

⎛⎝ +1
⋅−3 (( +z 1.8))⎞⎠

combined with a slightly softer power increase on the main meridian ( following the add 
2-trajectory) gives the isopower and isoastigmatism lines of Fig 9 and 10

Fig 9
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Fig 10

which are very close to the characteristics of Fig 7 and 8
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9.4 Progressiv R, the commercial product 

Now we consider the product which was sold with much success as the first progressive 
lens developed in Germany . The contour plots of this lens were published in the Deutsche 
Optikerzeitung [1] and in The Ophthalmic Optician [2]. They are reproduced here in Fig 11 
a and b.

Fig 11 a and b

If we compare these plots with the design  from the patent, represented in Fig 7 and 8 
above, we see , even taking into account that table 3 (columns 7 and 8) of the patent 
describes a progressive with add 3, that the design of the market product is different from 
the example given in the patent. 

So for example the ratio maximum astigmatism /add power for the market product is about 
1.25, whereas for progressive surface of table 3 of the patent it is near to 1.7 , i.e. the 
isolines in Fig 11 a and b present a much softer product.

There is a big number of parameters in the formulas defining the progressive surface of 
Progressif R which influences the surface character and which will be discussed in chapter 
9.5. We will learn, that rising the value of k(z) narrows the near vision zone and lowers the 
peripheral astigmatism.  Other parameters influencing essentially  the design are the 
progression length of the principal meridian and  the exponential coefficient c0 in a(z). 
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In the following calculations we will vary some of these parameters and will obtain a 
design close to what has been published in Fig 11 a and b. 

9.4.1 The principal meridian

We choose the main meridian of the patent claim 20, for the add power 1.0. The far 
vision radius rf  is 8 cm.

Integrating the differential equation for the curvature K(z) of the meridian 

＝―――――
Fm'' ((z))

⎛
⎝ +1 Fm' ((z))

2 ⎞
⎠

―
3

2

K ((z)) ＝Fm ((z)) x1 ((z))

＝x1' x2

＝x2' ⋅⎛⎝ +1 x2
2 ⎞⎠

―
3

2

K ((z))

≔K ((z)) +―
1

8
――
0.02

0.525

⎛
⎝ −1 ⎛⎝ +1

⋅−2.29 (( +z 2.19))⎞⎠
−30⎞

⎠

≔D (( ,z X))

X
1

⋅⎛
⎝

+1 X
1

2 ⎞
⎠

―
3

2

K ((z))

⎡
⎢
⎢
⎢
⎢⎣

⎤
⎥
⎥
⎥
⎥⎦

＝X ((z))
x1 ((z))
x2 ((z))

⎡
⎢⎣

⎤
⎥⎦

≔u 0.4057 ≔v 0.3316

≔init
u

v

⎡
⎢⎣

⎤
⎥⎦
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≔Zi 2.5
≔Zf −2.5

≔N 100

≔sol AdamsBDF (( ,,,,init Zi Zf N D))

                 z    x1=Fm(z)     x1'=Fm'(z)

=sol

2.5 ⋅4.057 10
−1

⋅3.316 10
−1

2.45 ⋅3.893 10
−1

⋅3.243 10
−1

2.4 ⋅3.733 10
−1

⋅3.171 10
−1

2.35 ⋅3.576 10
−1

⋅3.099 10
−1

2.3 ⋅3.423 10
−1

⋅3.027 10
−1

2.25 ⋅3.273 10
−1

⋅2.956 10
−1

2.2 ⋅3.127 10
−1

⋅2.885 10
−1

2.15 ⋅2.985 10
−1

⋅2.815 10
−1

⋮

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

Calculating the main meridian as a function of z : Fm(z)

Arranging the data in an ascending order of z

≔data =csort (( ,sol 0))

−2.5 ⋅4.88 10
−1

− ⋅4.21 10
−1

−2.45 ⋅4.68 10
−1

− ⋅4.11 10
−1

−2.4 ⋅4.47 10
−1

− ⋅4 10
−1

−2.35 ⋅4.27 10
−1

− ⋅3.9 10
−1

−2.3 ⋅4.08 10
−1

− ⋅3.8 10
−1

−2.25 ⋅3.89 10
−1

− ⋅3.7 10
−1

−2.2 ⋅3.71 10
−1

− ⋅3.6 10
−1

−2.15 ⋅3.53 10
−1

− ⋅3.51 10
−1

⋮

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦
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≔Z data
⟨⟨0⟩⟩

≔X1 data
⟨⟨1⟩⟩

≔X2 data
⟨⟨2⟩⟩

≔S cspline (( ,Z X1))

≔Fm ((z)) interp (( ,,,S Z X1 z))

≔S cspline (( ,Z X2))

≔D1Fm ((z)) interp (( ,,,S Z X2 z))

9.4.2 Geometry and equations of the progressive surface 

In the following calculations we will set k=13, c0=1.4 and the factor of the second term in 
a(z) equal to  2/2.5

≔rf 8

≔a ((z))

⎛
⎜
⎜⎝

+―
1

rf

⎛
⎜
⎜⎝

⋅2 ――――――
⎛⎝ +1

⋅1.4 (( −z 1))⎞⎠
−30

⋅2.5 52.5

⎞
⎟
⎟⎠

⎞
⎟
⎟⎠

−1

≔fs ((z)) −a ((z)) Fm ((z))

≔k ((z)) 13

≔b0 ((z)) +fs ((z)) ⋅――
1

k ((z))
2

⎛
⎝ −fs ((z)) ⋅⋅fs ((z))

2

K ((z))
‾‾‾‾‾‾‾‾‾‾‾‾‾⎛
⎝ +1 D1Fm ((z))

2 ⎞
⎠

⎞
⎠

≔b1 ((z)) −fs ((z)) b0 ((z))

≔ρs (( ,ψ z)) +b0 ((z)) ⋅b1 ((z)) cos (( ⋅k ((z)) ψ))

≔ρ (( ,ψ z))
‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾

++ρs (( ,ψ z))
2

⋅⋅2 ρs (( ,ψ z)) (( −rf a ((z)))) cos ((ψ)) (( −rf a ((z))))
2
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≔φ (( ,ψ z)) atan
⎛
⎜⎝
――――――――――

⋅ρs (( ,ψ z)) sin ((ψ))

+⋅ρs (( ,ψ z)) cos ((ψ)) (( −rf a ((z))))

⎞
⎟⎠

≔xc (( ,ψ z)) ⋅ρ (( ,ψ z)) cos ((φ (( ,ψ z))))

≔yc (( ,ψ z)) ⋅ρ (( ,ψ z)) sin ((φ (( ,ψ z))))

≔x (( ,ψ z)) yc (( ,ψ z)) ≔y (( ,ψ z)) −rf xc (( ,ψ z))

9.4.2.1 Fundamental Forms

Definition of the derivatives 

≔r (( ,ψ z))
x (( ,ψ z))
y (( ,ψ z))

z

⎡
⎢
⎢⎣

⎤
⎥
⎥⎦

≔xψ (( ,ψ z)) ――
d

dψ
x (( ,ψ z))

≔yψ (( ,ψ z)) ――
d

dψ
y (( ,ψ z))

≔rψ (( ,ψ z))
xψ (( ,ψ z))
yψ (( ,ψ z))

0

⎡
⎢
⎢⎣

⎤
⎥
⎥⎦

≔xz (( ,ψ z)) ――
d

dz
x (( ,ψ z))

≔yz (( ,ψ z)) ――
d

dz
y (( ,ψ z))

≔rz (( ,ψ z))
xz (( ,ψ z))
yz (( ,ψ z))

1

⎡
⎢
⎢⎣

⎤
⎥
⎥⎦
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≔xψψ (( ,ψ z)) ――
d

d

2

ψ
2
x (( ,ψ z))

≔yψψ (( ,ψ z)) ――
d

d

2

ψ
2
y (( ,ψ z))

≔rψψ (( ,ψ z))
xψψ (( ,ψ z))
yψψ (( ,ψ z))

0

⎡
⎢
⎢⎣

⎤
⎥
⎥⎦

≔xzz (( ,ψ z)) ――
d

d

2

z
2
x (( ,ψ z))

≔yzz (( ,ψ z)) ――
d

d

2

z
2
y (( ,ψ z))

≔rzz (( ,ψ z))
xzz (( ,ψ z))
yzz (( ,ψ z))

0

⎡
⎢
⎢⎣

⎤
⎥
⎥⎦

≔xψz (( ,ψ z)) ――
d

dz
xψ (( ,ψ z))

≔yψz (( ,ψ z)) ――
d

dz
yψ (( ,ψ z))

≔rψz (( ,ψ z))
xψz (( ,ψ z))
yψz (( ,ψ z))

0

⎡
⎢
⎢⎣

⎤
⎥
⎥⎦

1. Fundamental Form and unit normal vector

≔E (( ,ψ z)) ⋅rψ (( ,ψ z)) rψ (( ,ψ z))

≔F (( ,ψ z)) ⋅rψ (( ,ψ z)) rz (( ,ψ z))

≔G (( ,ψ z)) ⋅rz (( ,ψ z)) rz (( ,ψ z))
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≔No (( ,ψ z)) ―――――――
(( ⨯rψ (( ,ψ z)) rz (( ,ψ z))))
‖‖ ⨯rψ (( ,ψ z)) rz (( ,ψ z))‖‖

2. Fundamental Form

≔L (( ,ψ z)) ⋅rψψ (( ,ψ z)) No (( ,ψ z))

≔M (( ,ψ z)) ⋅rψz (( ,ψ z)) No (( ,ψ z))

≔N (( ,ψ z)) ⋅rzz (( ,ψ z)) No (( ,ψ z))

Principal Curvatures

≔H1 (( ,ψ z)) −+⋅E (( ,ψ z)) N (( ,ψ z)) ⋅G (( ,ψ z)) L (( ,ψ z)) ⋅2 F (( ,ψ z)) M (( ,ψ z))

≔H2 (( ,ψ z)) −⋅E (( ,ψ z)) G (( ,ψ z)) F (( ,ψ z))
2

≔H3 (( ,ψ z)) −⋅L (( ,ψ z)) N (( ,ψ z)) M (( ,ψ z))
2

≔K1 (( ,ψ z)) ――――――――――――――――

⎛
⎝ +H1 (( ,ψ z))

‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾
−H1 (( ,ψ z))

2
⋅⋅4 H2 (( ,ψ z)) H3 (( ,ψ z))

⎞
⎠

⋅2 H2 (( ,ψ z))

≔K2 (( ,ψ z)) ――――――――――――――――

⎛
⎝ −H1 (( ,ψ z))

‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾
−H1 (( ,ψ z))

2

⋅⋅4 H2 (( ,ψ z)) H3 (( ,ψ z))
⎞
⎠

⋅2 H2 (( ,ψ z))
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9.4.2.2 Mean optical power POW  and Astigmatism AST

≔POW (( ,ψ z)) ⋅−52.5
⎛
⎜⎝
―――――――
(( +K1 (( ,ψ z)) K2 (( ,ψ z))))

2

⎞
⎟⎠

≔AST (( ,ψ z)) ⋅52.5 (( −K1 (( ,ψ z)) K2 (( ,ψ z))))

Check that the principal meridian is an umbilical line

≔ψ 0 ≔z , ‥−2.6 −2.4 2.6

=AST (( ,ψ z))

⋅2.06 10
−2

⋅8.66 10
−4

⋅6.36 10
−4

⋅5.71 10
−4

⋅4.16 10
−4

⋅2.34 10
−3

⋅2.15 10
−3

⋅1.35 10
−3

⋮

0

1

2

3

4

5

6

7

 ⋮
26

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

Lines of constant mean optical power (Isopowerlines )

≔ψmin ⋅−0.1 ≔ψmax ⋅0.1 ≔n 14 ≔i ‥0 n

≔∆ψ ―――――
−ψmax ψmin

n
≔ψ
i

+ψmin ⋅i ∆ψ

≔zmin −2.4 ≔zmax 2.4

≔∆z ―――――
−zmax zmin

n
≔z
i

+zmin ⋅i ∆z
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≔MPOW (( ,ψ z)) ‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖‖

|
|
|
|
|
|
|
|
|
|
|
|

for ∊ |
|
|
|
|
|
|

|

i ‥0 last ((ψ))
‖
‖
‖
‖
‖
‖
‖‖

for ∊ |
|
|
|
|

|

j ‥0 last ((z))
‖
‖
‖
‖
‖
‖

←MPow
,i j

POW ⎛
⎝

,ψ
i
z
j
⎞
⎠

←Mz
,i j

z
j

←Mx
,i j

x ⎛
⎝

,ψ
i
z
j
⎞
⎠

return
Mx

Mz

MPow

⎡
⎢
⎢⎣

⎤
⎥
⎥⎦

≔ISOPOW =MPOW (( ,ψ z))
[15 × 15]
[15 × 15]
[15 × 15]

⎡
⎢
⎢⎣

⎤
⎥
⎥⎦

7

7.58

7

7

6.5 6.5

8.5

66

-1.5

-1

-0.5

0

0.5

1

1.5

2

-2.5

-2

2.5

-1.5 -1 -0.5 0 0.5 1 1.5 2-2.5 -2 2.5

6.5 7 7.5 8 8.5 95.5 6 9.5
ISOPOW

Fig 12 

Lines of constant astigmatism (Isoastigmatism plot)

≔ψmin ⋅−0.1 ≔ψmax ⋅0.1 ≔n 14 ≔i ‥0 n

≔∆ψ ―――――
−ψmax ψmin

n
≔ψ
i

+ψmin ⋅i ∆ψ

≔zmin −2.4 ≔zmax 2.4

≔∆z ―――――
−zmax zmin

n
≔z
i

+zmin ⋅i ∆z
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≔MAST (( ,ψ z)) ‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖‖

|
|
|
|
|
|
|
|
|
|
|
|

for ∊ |
|
|
|
|
|
|

|

i ‥0 last ((ψ))
‖
‖
‖
‖
‖
‖
‖‖

for ∊ |
|
|
|
|

|

j ‥0 last ((z))
‖
‖
‖
‖
‖
‖

←MAsti
,i j

AST ⎛
⎝

,ψ
i
z
j
⎞
⎠

←Mz
,i j

z
j

←Mx
,i j

x ⎛
⎝

,ψ
i
z
j
⎞
⎠

return
Mx

Mz

MAsti

⎡
⎢
⎢⎣

⎤
⎥
⎥⎦

≔ISOAST =MAST (( ,ψ z))
[15 × 15]
[15 × 15]
[15 × 15]

⎡
⎢
⎢⎣

⎤
⎥
⎥⎦

0.5

0.5

1

1
1.5

1.5

2

2

2

2

2.5

2.5

2.5

2.5

2.5 2.53

3

-1.5

-1

-0.5

0

0.5

1

1.5

2

-2.5

-2

2.5

-1.5 -1 -0.5 0 0.5 1 1.5 2-2.5 -2 2.5

1.5 2 2.5 3 3.50.5 1 4
ISOAST Fig 13

9.4.3 Analysis  of design and calculations

The design in  Fig 12 and 13 is almost identical to the isolines plots in  Fig 11 a and b, 
regarding the characteristical structure as well as the dimensions, like widths of the 
different viewing zones. Thus the specific parameter choice in the calculations above is one 
option to get a design close to the lens, Rodenstock marketed as Progressiv R. But taking 
into account the big number of parameters in the formulas of the patent,  there are 
certainly other possible combinations to obtain about the same result.
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Comparing now the properties of Progressiv R, Varilux 1 and Varilux 2 , we have to take 
into account that Varilux 1 is a lens of the first generation and that the goal was to 
construct a surface whith bifocal-like features. Accordingly Varilux 1 is distinguished by 
large aberrationfree NV and FV regions, accepting however a high amount of astigmatism 
and strong power/astigmatism gradients in the intermediate periphery.
Varilux 2 and Progressiv R benefit from the large scale market  feedback from the Varilux 1 
wearers. The Varilux 2 surface, with an astigmatism maximum value of about the add 
power and its considerable reduction of distortion, improved significantly the visual 
comfort, which was the breakthrough on the market. As the Varilux 2 geometry is totally 
aspherized, the surface astigmatism extends into the FV periphery. The Progressiv R design 
reduces this lateral  FV astigmatism, has a width of the near vision zone in-between the 
Varilux 1 and the Varilux 2 design  and shows a reduced peripheral astigmatism in the 
progression of a little above the add power.

The challenge for the Progressiv R development was to design a progressive surface with a 
visual comfort competitive with Varilux 2  and supporting the ( mainly commercial) 
argument, that the lens power could be ordered exactly to prescripton. Extended  double 
blind wearer tests confirmed, that Progressiv R was appreciated by its excellent overall 
performance and its remarkable far vision quality [2].

9.5 The structure of the progressive surface with variable 
periodicity

9.5.1 Reasoning for the functions  k(z) and a(z)

To introduce the discussion let us have a look how the plots evolve, when we vary the 
parameters of k(z) and a(z). For the add power 3 we choose the cornerpoints of the two-
dimensional (a,k)-range analyzed in the tables 1 to 3  in the columns 7 and 8 of the  
patent . In order to demonstrate the characteristics and differences, in the Fig 14-17  
below we use the isoastigmatism-plots, which illustrate the differences more clearly. 
(For improved clarity in these diagrams  the spacing between the isolines  is 1 D starting 
with the 0.5 D curve.)

Fig 14: a(z)=rf, k(z)=3 Fig 15: a(z)=rf, k(z)=10
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Fig 16: a(z)=rn, k(z)=3 Fig 17: a(z)=rn, k(z)=10

where rf is the radius of curvature in the far vision reference point and rn the radius of 
curvature in the near vison reference point. In this example are rf=8 cm and rn=5.49 cm.

The combination in Fig 15 represents a reasonable design with  good quality of the far 
vision zone and the lateral astigmatism, but the near vision part is rather narrow. 
Concerning the performance of the near vision zone the isoplot in Fig 16 is certainly the 
best design, but here the far vision part is rather poor and the peripheral astigmatism is 
marked by a strong gradient.

So a reasonable solution could be to calculate the lower part of the lens according to a  
combination close to (a=rn, k=3), the the upper part using (a=rf, k=10) and optimizing 
the sections of the intermediate region according to a continuous  transition between 
these two (a,k)-couples. 

So G. Guilino and R. Barth proposed first an auxiliary coordinate system with a curvilinear 
cylinder axis defined by its distance a(z) to the z-axis of the (x,y,z)-coordinate system:

＝a ((z))

⎛
⎜
⎜
⎜⎝

+―
1

rf
――――――
⎛⎝ +1

c0 (( −z d0))⎞⎠
−m0

⋅―
3

A
52.5

⎞
⎟
⎟
⎟⎠

−1

where particularly c0=3, d0=1, m0=30

and second a periodicity function k(z)

＝k ((z)) +3 ―――――
7

⎛⎝ +1
⋅−3 (( +z 1.8))⎞⎠
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9.5.2 Why periodic horizontal  sections?

Guilino and Barth  explain their choice of the design of variable periodicity [1] with the 
fact, that periodic functions will remain limited below certain thresholds and so also 
characteristic surface properties, as astigmatism in the periphery, will not increase   
beyond certain thresholds. In order to check this hypothesis let us analyze in the following 
section 3 examples. 

First Example : a(z) and k(z) are constant 

We choose  the example above a(z)=rf and k(z)= 10 and analyse  how the isolines 
behave, if we consider the more distant design periphery. Fig. 18 shows a clear periodicty 
of the design pattern . The first segment is symmetric  to the vertical axis at  x about 
2.3 cm and a second segment starts at x about 4.6 cm . The vertical at this place is a 
second ombilic line.   

Fig 18 : a(z)=rf, k(z)=10

The reason for this periodicity  with a wavelength of about 4.6 cm is the curvature 
modulation of the horizontal sections. Fig 19a to 19c show the optical power pr in D for 
the horizontal sections for z=-1.6 (near vision), z=-0.8 (intermediate vision) and z=1.0 
(far vision)  
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Fig. 19 a: add 3, a=rf, k=10, z=-1.6

Fig 19 b: add 3, a=rf, k=10, z=-0.8

Fig 19 c: add 3,a=rf, k=10, z=1.0
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As expected, considering the mathematical approach in chapter 9.2, the curvature of the 
horizontal sections follows a  a sine-curve. From the maximum at x=0 the curvature 
decreases until a minimum at x=2.3/2.45 cm ( slightly rising from NV to FV), from where it 
grows to a maximum at x=4.6/4.9 cm, corresponding to the periodicity of the isolines 
design pattern. 

This  lateral curvature decrease is strong in the near vision portion, becoming smaller in 
the progression and approaching zero in the far vision.

Above z= 1cm  the sections are pure circles. 

Second example: the patent 

We take the formulas and figures of table 3 of the columns 7 and 8 of the patent

A=3  ＝rf 8.75 ＝c
0

3 ＝d
0

1 ＝m
0

30

＝a ((z))

⎛
⎜
⎜
⎜⎝

+―
1

rf
――――――
⎛⎝ +1

c0 (( −z d0))⎞⎠
−m0

⋅―
3

A
52.5

⎞
⎟
⎟
⎟⎠

−1

＝k ((z)) +3 ―――――
7

⎛⎝ +1
⋅−3 (( +z 1.8))⎞⎠

Fig 20 a, 20 b and 20 c show the optical power pr calculated for the horizontal sections  
at z=-1.6,-0.8 and 1.0 cm ( k(z) =3+7 is used as abbreviation for the extended formula 
above )

Fig 20 a: add 3, k(z)=3+7, 
z=-1.6
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Fig 20 b: add 3,  k(z)=3+7, 
z=-0.8

Fig 20 c: add 3, k(z)=3+7, 
z=1.0

The periodicity k(z) is growing from the near vision point z=-1.6 to the far vision point 
z=1.0 from 7.5 to 10.  At the bottom of the lens (z<-2.5 cm) the curvature minimum is 
situated  at x> 4 cm , i.e. outside the lens surface, and in the  far vision region the 
position of the (very flat) minimum  is at about  x=2.5 cm i.e. at an viewing angle of about 
40°.  For k(z)=3+7, within the large field of view of 40°, the curvature of the horizontal 
sections is only decreasing. This lateral curvature decrease is strong in the near vision 
portion, becoming smaller in the progression and approaching zero in the far vision field.

Above z= 1 cm  the sections are pure circles. Nowhere in the far vision part the horizontal 
section starts with a curvature increase at the main meridian as it as the case for Varilux 2.

The periodicity of the horizontal sections does not show up in the pattern of the isolines. If 
we extend the calculations  until x-values of 4 to 5 cm we encounter astigmatism values of 
20 and more diopters and no periodicity of the design can be detected.



Seite 33

Third  example: the market product

The last example, which we will analyze a little closer, is the design which approximates 
the product which had been sold on the market. The horizontal sections for z=-1.6, z=-0.8 
and z=1.0 are presented in Fig 21 a, 21 b and 21 c.

Fig 21 a: add 2, k(z)=13, 
z=-1.6

Fig 21 b: add 2, k(z)=13, 
z=-0.8
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Fig 21 c : add 2, k(z)=13, 
z=1.0

For  k=13 the modulation wavelength  for the three horizontal sections is nearly constant , 
i.e. 3.5 cm for k=-1.6 and 3.8 cm  for k=-0.8 and 1.0 . The amplitude of the sine-curve is 
somewhat smaller than for k(z)=3+7 . For  the horizontal sections are pure >z 1.5
circles .
Fig 22 shows the isoastigmatism pattern, if the calculations are extended until x=5.5 cm. 
The astigmatism increases until a vertical "symmetry-axis" at x=1.8, then it decreases and 
starts growing again at x about 3.3 cm. 

Fig 22
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9.5.3 Conclusion

When a and k are both constant the design shows a periodic structure of the isolines  , the 
periodicity being identical with that of the curvature modulation of the horizontal sections.

If we choose k variable with z, a small initial value of 3 to 5 for negative z  means a  broad 
NV-part combined with a rather high amount of lateral astigmatism in the lower part of the 
lens . Increasing this initial value means that the near vison part will become smaller and 
the aberrations in the periphery of the near vision and lower intermediate portion will 
diminish. The quality of the upper intermediate portion  will be improved by increasing the 
total k-value (10 to 15) for high positive z. A combination of a low initial k-value with a 
high total k-value reduces neatly the extension of the island of negative power in the 
periphery of the powerplot.

A strong influence on the design characteristics has the a(z) parameter c0. A c0 value of 3 
represents a very sudden transition from the intermediate vision to the far vision zone . If 
the c0 value is reduced, the curvature of the a(z) axis of the auxiliary coordinate system 
becomes flatter, i.e. the transition of the function a(z)  to its asymptotic values becomes 
softer. This means a smaller gradient of astigmatism and power between FV and IV zone 
and a symmetry in the astigmatism pattern with a decrease of the astigmatism in the lens 
periphery, which allows the lens designer to limit the lateral aberrations.

Thus the combination of a high total k-value ( periodicity-wavelength in the order of the 
lens radius, see Fig 21) with a low c0 of about 1.5 is one way to reach low peripheral 
astigmatism as in the market design of Progressif R. Higher k- values cause however 
smaller NV parts, but as visual acuity requirements for near vision work are lower, the 
usable near vision portion is determined by the 1 D-and 2 D-isoastigmatism lines and 
remains relatively large ( see also the NV part outside the yellowish- shadowed region in 
Fig 11b).  
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