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6. Varilux 1, the first commercial progressive lens

The situation before the breakthrough by Bernard Maitenaz

In a first patent filed in 1932 (US 2 001 952) Henry James Birchall specifies ( a little 
vaguely) a surface of the Rüssel type (elephant's trunk) and outlines  briefly  a 
manufacturing method for a progressive lens (not part of the claims). In a second patent 
filed in 1945 (US 2 475 275) he describes qualitatively how the curvature of the orthogonal 
sections has to evolve from the main meridian to the edge of the lens in order to reduce 
the lateral distortion. Bennett [1] presents  sketches of an unpublished manuscript from 
H.J. Birchall showing how the deformation of a rectangular grid is getting smaller when the 
curvature of the sections perpendiculalar to the main meridian decreases to the edge of 
the lens (convex progressive surface) . A second claim covers a lens in which a progressive 
surface merges into a spherical section at either one or both ends. C.W. Kanolt in his 
patent US 2 878 721 (application 1954) gives a mathematical description of special 
progressive surfaces which are calculated to respect certain thresholds of peripheral 
astigmatism less than 1 D. The surface is divided into different areas described 
mathematically by polynomials. On the straight dividing lines of these areas the functions 
and their first and second derivatives have identical values. The power increases 
continuously from the top to the bottom of the lens and consequently there are no zones 
exempt from astigmatism.

So up to the fifties certain basic elements characterizing the structure and the performance 
of progressives were known, but the patents remain (almost exclusively) focussed  on  
theoretical considerations of  the surface geometry and image quality and do not address 
the problem how to realize the lens. 

6.1 Focus on the manufacturing process

It was the breakthrough for the progressive lens type when Bernard Maitenaz invented the 
technical means to produce economically a complex surface with no rotational symmetry.
Already in his first patent US 2 869 422, filed November 25, 1953 in France he defined a 
progressive lens together with a detailed  proposal for first manufacturing methods.
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Fig 1

He describes a progressive design characterized by an umbilical line and a circle as the 
generatrix curve. In Fig 1 the generating surface (here reduced to a circle) is constituted 
by the circular edge of the inverted cup-grinding wheel. The evolute of the main meridian 

ɣ is the contour AB of the cam C, which is fixed to the mounting  E of the lens V to be cut. 
This cam is rolling without slipping on the plane surface of the bar C'. A steel strip 18a 
ensures the slip-free rolling of the cams C and C' with a contact point T. The bar C' is 
mounted so, that it can pivot about a tangent perpendicular to the plane of the figure in 
the point G of the circular edge of the grinding tool. Following the theorem of Meusnier at 
point G the radius of curvature  of the orthogonal section of the generated surface is  
given by 

Ros=GD/sinα

where α ist the angle between the tool rotation axis and the normal to the main meridian 
in G.
The  slip-free rolling motion of the cams C and C' takes place about a momentary rotation 
axis perpendicular to the plane of the figure in the contact point T between the two cams.  
So the radius of curvature Rd of the directrix , i.e. the main meridian,  is TG , which is  
tangent to the evolute AB.
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To make sure to get an umbilical line . i.e. Ros=Rd the contact point T between C and C' 
has always  to lie on the rotation axis XX' of the grinding wheel. So there is a roller fixed to 
the cam C which rolls on another fixed cam c having a profile so designed, that the contact 
point T always will be maintained on the axis XX'.
In 1959 Bernard Maitenaz  patented as US 2 915 856  “Machine for Grinding an Optical 
Surface in a Piece of Refractive Material” several manufacturing methods for more complex 
surfaces than that created by the generating surface of a circle described in the first 
patent.

Fig 2

For example in Fig 2 the generating surface S is a cone of revolution with an half-angle 

. The cam C , fixed to the mounting of the lens is rolling without slipping on a α

vertical guide strip C'. The profile of the cam C is the evolute of the main meridian to be 
cut. The steel strip 18 ensures the slip-free rolling motion. If the half-angle is 45° the 
sections perpendicular to the directrix of the generated surface  are parabolas, 
changing for <45° into ellipses and into hyperbolas for >45°.α α

Getting rid of the constraints: The point by point manufacturing

In his patent US 2 982 058 granted in 1961 Maitenaz describes the manufacturing 
method point by point with which he gets rid of all the constraints of the manufacturing 
methods using mechanical cams.  This new method allows not only to realize the 
principal meridian with stabilized power sections for far and near vision but also to 
model the lateral parts in order to minimize the aberrations. This manufacturing 
method was the predecessor of to-days surface manufacturing with CNC machines .
At the time of the Varilux creation the manufacture of a "point by point" surface with 
4000 points with a 1 mm spacing lasted about 2 days. 
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The history of this  era of  development is described by Maitenaz in " Four steps that 
led to Varilux " [2] and  is told by Jean-Charles Le Roux [3]. The long manufacturing 
time made it necessary to cut at first a master in metal which in a second step  served 
as model for large scale copying on glass lenses ( US patent 3 041 789 ).

Bernard Maitenaz describes how in the beginning of the Varilux creation the meridian 
chosen was of the type close to the involute of a circle  and the astigmatismus plot of 
these first designs are depicted in [2] as well as in figure 3 of the patent US 3 687 528  
(the "Varilux 2" patent). These diagrams are similar to the plot which we calculated in 
the  chapter " The Rüssel ", where we made the same choice for the principal meridian. 
In the following years between 1951 and 1958 applying the "point by point" 
manufacturing method  the meridian evolved to a curve with stabilized power for far 
and near vision and a surface design with large aberrationfree zones for far and near 
vision.

In 1959 the Société des Lunetiers successfully launched Varilux - the first commercial 
progressive lens .

6.2 The coordinate system

Fig 3
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The main meridian is situated in the yz plane of a Cartesian coordinate system (x,y,z).  
Moving from near vision to far vison z increases, the z-axis being tangent to a point in  
between (for example the center of the finished lens where the prismatic effect is 
checked). 

The orthogonal sections are described in a Cartesian coordinate sytem (ξ,η,ζ) moving with 
the orthogonal section.Where the section intersects the main meridian is the origin of this 

coordinate system, the  ζ-axis being tangent to the principal meridian , increasing ζ
meaning increasing z .So in this system the orthogonal section is described by an equation 

between ξ and η , ξ- and x-values are identical.  

6.3 The principal meridian 

For a design  with an umbilical main meridian and circular orthogonal sections (what we 
assume for the calculations), the power profile of the main meridan is the only degree of 
freedom. There were no precise data  about the the Varilux 1 progression available. In [2] 
there is a diagram of the power progression with stabilized far and near vision zones and a 
length of about 12mm.

Fig 4 a and 4 b show two types of the main meridian with stabilized power regions, which 
we have tested here.

Fig 4 a
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Fig 4 b

Both meridians have an effective  progression length of 13 mm defined by the distance of 
the two meridian points with (FV power +0.12 D) and (NV power -0.12 D). For the 
meridian in Fig 4 a the transition into the power stabilization is more abrupt for the FV 
part than for the NV region, for the curve in Fig 4 b it is the opposite. Thus the first 
design shows a strong astigmatism gradient in the beginning of the far vision zone , the 
same is true for the second design as regards the upper lateral near vision region.
A solution which maintains a short power progression, a widely aberrationfree FV and a 
resonably broad NV, but  has a more balanced astigmatism gradient, is represented by 
the follwing equation.  

Nevertheless, also this design is a compromise, because the meridian shows a slight 
overpowering in the near vision part.
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It has to be noted that K(z0) is the geometrical curvature , multiplication with (n-1) gives 
the optical power. The far vision radius is 87.5 mm corresponding to the far vision power 
of 6 D. The add power is 2 D.

The main meridian Fm(z0) and its first derivative are obtained by integration of the 
differential equation for the curvature. 

Integrating the differential equation for the curvature K(z0) of the 
meridian with power stabilization 

＝――――――
Fm'' ((z0))

⎛
⎝ +1 Fm' ((z0))

2 ⎞
⎠

―
3

2

K ((z0)) ＝Fm ((z0)) x1 ((z0))

＝x1' ((z0)) x2 ((z0))

＝x2' ((z0)) ⋅K ((z0))
⎛
⎝ +1 x2 ((z0))

2 ⎞
⎠

―
3

2

≔K ((z0)) +――
1

87.5
⋅―――

0.0022

⋅4 0.525

⎛
⎝ −+1 ⋅3 ⎛⎝ +1

⋅0.29 (( +z0 3))⎞⎠
−3

⎛⎝ +1
⋅−0.20 (( +z0 28))⎞⎠

−30⎞
⎠

≔D (( ,z0 X))

X
1

⋅⎛
⎝

+1 X
1

2 ⎞
⎠

―
3

2

K ((z0))

⎡
⎢
⎢
⎢
⎢⎣

⎤
⎥
⎥
⎥
⎥⎦

＝X ((z0))
x1 ((z0))
x2 ((z0))

⎡
⎢⎣

⎤
⎥⎦
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≔u 3.689 ≔v 0.3000

u and u are the initial values for Fm(z0) and D1Fm(z0)=Fm'(z0) in z0=25 mm calculated 
first from a circle with rf=87.5mm and then iteratively corrected, so that for z0=0 Fm(z0) 
and D1Fm(z0) are zero

≔init
u

v

⎡
⎢⎣

⎤
⎥⎦

≔Zi 25

≔Zf −25

≔N 100

≔sol AdamsBDF (( ,,,,init Zi Zf N D))

                 z0     x1=Fm     x2=Fm'(z0)

=sol

⋅2.5 10 3.689 ⋅3 10
−1

⋅2.45 10 3.541 ⋅2.935 10
−1

⋅2.4 10 3.395 ⋅2.871 10
−1

⋅2.35 10 3.254 ⋅2.806 10
−1

⋮

⎡
⎢
⎢
⎢
⎢
⎢⎣

⎤
⎥
⎥
⎥
⎥
⎥⎦

Calculating the main meridian as a function of z0 : Fm(z0)

Arranging the data in an ascending order of t

≔data csort (( ,sol 0))
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=data

−25 4.319 −0.379
−24.5 4.132 −0.37
−24 3.949 −0.36
−23.5 3.771 −0.351
−23 3.598 −0.342
−22.5 3.429 −0.333
−22 3.265 −0.324
−21.5 3.106 −0.315
−21 2.951 −0.306
−20.5 2.8 −0.297

⋮

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

≔Z data
⟨⟨0⟩⟩

≔X1 data
⟨⟨1⟩⟩

≔X2 data
⟨⟨2⟩⟩

≔S1 cspline (( ,Z X1))

≔Fm ((z0)) interp (( ,,,S1 Z X1 z0))

≔S2 cspline (( ,Z X2))

≔z0 , ‥−25 −24 25

0.9
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2.7
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3.6

4.05

0
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4.5
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Fig 5
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≔D1Fm ((z0)) interp (( ,,,S2 Z X2 z0))
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0.225

-0.45
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Fig 6

6.4 Geometry and equations of the progressive surface

Assuming that the orthogonal sections are circles with radii of curvature which are 
respectively equal to the radii of curvature of the meridian at the points of intersection 
(umbilical line), the vertex equation of the circle is

≔η (( ,z0 ξ)) ―――――――

⎛
⎝ −1

‾‾‾‾‾‾‾‾‾‾‾‾
−1 ⋅ξ

2
K ((z0))

2 ⎞
⎠

K ((z0))

So in the (x,y,z)-coordinate system we get

≔x (( ,z0 ξ)) ξ
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≔y (( ,z0 ξ)) +Fm ((z0)) ――――――
η (( ,z0 ξ))

‾‾‾‾‾‾‾‾‾‾‾‾
+1 D1Fm ((z0))

2

≔z (( ,z0 ξ)) −z0 ⋅η (( ,z0 ξ)) ――――――
D1Fm ((z0))

‾‾‾‾‾‾‾‾‾‾‾‾
+1 D1Fm ((z0))

2

6.4.1 Fundamental Forms

Definitions

≔r (( ,z0 ξ))
x (( ,z0 ξ))
y (( ,z0 ξ))
z (( ,z0 ξ))

⎡
⎢
⎢⎣

⎤
⎥
⎥⎦

≔xz0 (( ,z0 ξ)) ――
d

dz0
x (( ,z0 ξ))

≔yz0 (( ,z0 ξ)) ――
d

dz0
y (( ,z0 ξ))

≔zz0 (( ,z0 ξ)) ――
d

dz0
z (( ,z0 ξ))

≔rz0 (( ,z0 ξ))
xz0 (( ,z0 ξ))
yz0 (( ,z0 ξ))
zz0 (( ,z0 ξ))

⎡
⎢
⎢⎣

⎤
⎥
⎥⎦

≔xξ (( ,z0 ξ)) ――
d

dξ
x (( ,z0 ξ))

≔yξ (( ,z0 ξ)) ――
d

dξ
y (( ,z0 ξ))

≔zξ (( ,z0 ξ)) ――
d

dξ
z (( ,z0 ξ))
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≔rξ (( ,z0 ξ))
xξ (( ,z0 ξ))
yξ (( ,z0 ξ))
zξ (( ,z0 ξ))

⎡
⎢
⎢⎣

⎤
⎥
⎥⎦

≔xz0z0 (( ,z0 ξ)) ――
d

d

2

z0
2
x (( ,z0 ξ))

≔yz0z0 (( ,z0 ξ)) ――
d

d

2

z0
2
y (( ,z0 ξ))

≔zz0z0 (( ,z0 ξ)) ――
d

d

2

z0
2
z (( ,z0 ξ))

≔rz0z0 (( ,z0 ξ))
xz0z0 (( ,z0 ξ))
yz0z0 (( ,z0 ξ))
zz0z0 (( ,z0 ξ))

⎡
⎢
⎢⎣

⎤
⎥
⎥⎦

≔xξξ (( ,z0 ξ)) ――
d

d

2

ξ
2
x (( ,z0 ξ))

≔yξξ (( ,z0 ξ)) ――
d

d

2

ξ
2
y (( ,z0 ξ))

≔zξξ (( ,z0 ξ)) ――
d

d

2

ξ
2
z (( ,z0 ξ))

≔rξξ (( ,z0 ξ))
xξξ (( ,z0 ξ))
yξξ (( ,z0 ξ))
zξξ (( ,z0 ξ))

⎡
⎢
⎢⎣

⎤
⎥
⎥⎦

≔xz0ξ (( ,z0 ξ)) ――
d

dξ

⎛
⎜
⎝
――

d

dz0
x (( ,z0 ξ))

⎞
⎟
⎠

≔yz0ξ (( ,z0 ξ)) ――
d

dξ

⎛
⎜
⎝
――

d

dz0
y (( ,z0 ξ))

⎞
⎟
⎠

≔zz0ξ (( ,z0 ξ)) ――
d

dξ

⎛
⎜
⎝
――

d

dz0
z (( ,z0 ξ))

⎞
⎟
⎠
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≔rz0ξ (( ,z0 ξ))
xz0ξ (( ,z0 ξ))
yz0ξ (( ,z0 ξ))
zz0ξ (( ,z0 ξ))

⎡
⎢
⎢⎣

⎤
⎥
⎥⎦

1. Fundamental Form and unit normal vector

≔E (( ,z0 ξ)) ⋅rz0 (( ,z0 ξ)) rz0 (( ,z0 ξ))

≔F (( ,z0 ξ)) ⋅rz0 (( ,z0 ξ)) rξ (( ,z0 ξ))

≔G (( ,z0 ξ)) ⋅rξ (( ,z0 ξ)) rξ (( ,z0 ξ))

≔No (( ,z0 ξ)) ――――――――
⨯rz0 (( ,z0 ξ)) rξ (( ,z0 ξ))

‖‖ ⨯rz0 (( ,z0 ξ)) rξ (( ,z0 ξ))‖‖

2. Fundamental Form

≔L (( ,z0 ξ)) ⋅rz0z0 (( ,z0 ξ)) No (( ,z0 ξ))

≔M (( ,z0 ξ)) ⋅rz0ξ (( ,z0 ξ)) No (( ,z0 ξ))

≔N (( ,z0 ξ)) ⋅rξξ (( ,z0 ξ)) No (( ,z0 ξ))

≔H1 (( ,z0 ξ)) −+⋅E (( ,z0 ξ)) N (( ,z0 ξ)) ⋅G (( ,z0 ξ)) L (( ,z0 ξ)) ⋅⋅2 F (( ,z0 ξ)) M (( ,z0 ξ))

≔H2 (( ,z0 ξ)) −⋅E (( ,z0 ξ)) G (( ,z0 ξ)) F (( ,z0 ξ))
2

≔H3 (( ,z0 ξ)) −⋅L (( ,z0 ξ)) N (( ,z0 ξ)) M (( ,z0 ξ))
2
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Principal curvatures 

≔K1 (( ,z0 ξ)) ―――――――――――――――――

⎛
⎝ +H1 (( ,z0 ξ))

‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾⎛
⎝ −H1 (( ,z0 ξ))

2

⋅4 H2 (( ,z0 ξ)) H3 (( ,z0 ξ))
⎞
⎠

⎞
⎠

⋅2 H2 (( ,z0 ξ))

≔K2 (( ,z0 ξ)) ―――――――――――――――――

⎛
⎝ −H1 (( ,z0 ξ))

‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾⎛
⎝ −H1 (( ,z0 ξ))

2
⋅4 H2 (( ,z0 ξ)) H3 (( ,z0 ξ))

⎞
⎠

⎞
⎠

⋅2 H2 (( ,z0 ξ))

6.4.2 Mean optical power POW  and Astigmatism AST

≔POW (( ,z0 ξ)) ⋅525 ――――――――
(( +K1 (( ,z0 ξ)) K2 (( ,z0 ξ))))

2

≔AST (( ,z0 ξ)) ⋅525 (( −K1 (( ,z0 ξ)) K2 (( ,z0 ξ))))

Check, that the principal meridian is an umbilical line

≔ξ 0 ≔z0 , ‥−25 −20 25

=AST (( ,z0 ξ))

0.003

⋅8.14 10
−6

⋅5.626 10
−4

⋅4.089 10
−5

0.002

⋅2.834 10
−4

⋅1.873 10
−4

⋅6.137 10
−5

⋅3.447 10
−5

⋅6.843 10
−6

0.002

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

=POW (( ,z0 ξ))

8.19
8.163
7.992
7.444
6.576
6.1
6.023
6.008
6.003
6.001
5.999

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦
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Lines of constant mean optical power (Isopowerlines )

Loop calculation

≔ξmin −20 ≔ξmax 20 ≔n 20 ≔i ‥0 n

≔∆ξ ―――――
−ξmax ξmin

n
≔ξ
i

+ξmin ⋅i ∆ξ

≔z0min −20 ≔z0max 20

≔∆z0 ―――――
−z0max z0min

n
≔z0
i

+z0min ⋅i ∆z0

≔MPOW (( ,ξ z0)) ‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖‖

|
|
|
|
|
|
|
|
|
|
|
|

for ∊ |
|
|
|
|
|
|

|

i ‥0 last ((ξ))
‖
‖
‖
‖
‖
‖
‖‖

for ∊ |
|
|
|
|

|

j ‥0 last ((z0))
‖
‖
‖
‖
‖
‖

←MPow
,i j

POW ⎛
⎝

,z0
j
ξ
i
⎞
⎠

←Mz
,i j

z0
j

←Mx
,i j

x ⎛
⎝

,z0
j
ξ
i
⎞
⎠

return
Mx

Mz

MPow

⎡
⎢
⎢⎣

⎤
⎥
⎥⎦

≔ISOPOW =MPOW (( ,ξ z0))
[21 × 21]
[21 × 21]
[21 × 21]

⎡
⎢
⎢⎣

⎤
⎥
⎥⎦
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Mathcad program 

≔FA (( ,ξ z0)) ‖‖POW (( ,z0 ξ))‖‖

≔ξlow −20 ≔ξhigh 20 ≔ξn 20

≔z0low −20 ≔z0high 20 ≔z0n 20

7.57

6.5
7

7

8

7.5

7.5

6.5

6.5

8

8

6

6
-12

-8

-4

0

4

8

12

16

-20

-16

20

-12 -8 -4 0 4 8 12 16-20 -16 20

6.5 7 7.55.5 6 8
ISOPOW

≔FA CreateMesh (( ,,,,,,FA ξlow ξhigh z0low z0high ξn z0n))

Loop calculation

Fig 7

7.57

6.5

7

7

8

7.5

7.5

6.5

6.5

8

8

6

6
-12

-8

-4

0

4

8

12

16

-20

-16

20

-12 -8 -4 0 4 8 12 16-20 -16 20

6.5 7 7.55.5 6 8
FA

Mathcad program
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Power increase in 0.125-steps

7.6

7.57.47.37.17

6.9

6.8
6.6

6.5
6.4 6.3
6.1

7.87.9

7

7

8

7.17.1
6.9

6.9

7.3

7.3

6.8
6.8

7.4

7.4

7.5

7.5

6.6

6.6

7.6
7.6

6.5

6.5

7.8

7.8

7.9

7.9

6.46.4

8

8

6.3

6.3

6
65.9
5.9

-12

-8

-4

0

4

8

12

16

-20

-16

20

-12 -8 -4 0 4 8 12 16-20 -16 20

6 6.16.36.46.56.66.86.9 7 7.17.37.47.57.67.87.95.85.9 8
FA

Mathcad program

Fig 7 a 

Lines of constant astigmatism (Isoastigmatism plot)

Loop calculation

≔ξmin −20 ≔ξmax 20 ≔n 20 ≔i ‥0 n

≔∆ξ ―――――
−ξmax ξmin

n
≔ξ
i

+ξmin ⋅i ∆ξ

≔z0min −20 ≔z0max 20

≔∆z0 ―――――
−z0max z0min

n
≔z0
i

+z0min ⋅i ∆z0
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≔MAST (( ,ξ z0)) ‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖‖

|
|
|
|
|
|
|
|
|
|
|
|

for ∊ |
|
|
|
|
|
|

|

i ‥0 last ((ξ))
‖
‖
‖
‖
‖
‖
‖‖

for ∊ |
|
|
|
|

|

j ‥0 last ((z0))
‖
‖
‖
‖
‖
‖

←MAsti
,i j

AST ⎛
⎝

,z0
j
ξ
i
⎞
⎠

←Mz
,i j

z0
j

←Mx
,i j

x ⎛
⎝

,z0
j
ξ
i
⎞
⎠

return
Mx

Mz

MAsti

⎡
⎢
⎢⎣

⎤
⎥
⎥⎦

≔ISOAST =MAST (( ,ξ z0))
[21 × 21]
[21 × 21]
[21 × 21]

⎡
⎢
⎢⎣

⎤
⎥
⎥⎦

Mathcad program

≔FA (( ,ξ z0)) ‖‖AST (( ,z0 ξ))‖‖

≔ξlow −20 ≔ξhigh 20 ≔ξn 20

≔z0low −20 ≔z0high 20 ≔z0n 20

≔FA CreateMesh (( ,,,,,,FA ξlow ξhigh z0low z0high ξn z0n))
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 6.5 Analysis  of design and calculations

For the calculations of this document circles were chosen as orthogonal sections , as it was 
claimed for the first Varilux in the commercial publications. Maitenaz also speaks  in his 
famous Varilux 2- patent US 3 687 528 of circles as the sections of the first surfaces.
The Isopower- and Isoastigmatism-plots Fig 7 and 8 show  large viewing zones for far- and 
near-vision. Rather nice are the almost horizontal isopower-lines. The effective progression 
length  measured between the points where the meridian power reaches 6.12 respectively 
7.88 D is about 14 mm ( see power plot 6 a in 0.125 steps).
In the periphery the power progression shows respectively two symmetrically situated  
"islands" of steeper increase in the upper part of the progression and of power decrease in 
the lower part. 
The lateral  astigmatism increases strongly towards the periphery and reaches values for 
more than 6 D (which is more than 3 x add power ) for x>16 mm.

Fig 9

The design shown in Fig 9 is not the Varilux 1, but another design of the first generation 
which was launched in 1974 by BBGR, France, under the tradename Zoom [4]. As regards 
the pattern of the isolines and the maximum value of the lateral astigmatism it is close to 
the design calculated in this chapter. The Zoom design is a little softer and its astigmatism 
gradient is a little more shifted downwards. So as already mentioned, the meridian in 6.3 is 
not yet the optimum. 
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The lateral aberrations of this first progressive design required from the wearer a certain 
adaptation time to these new lenses, sometimes lasting several days . One special optical 
effect was the distortion of vertical and horizontal lines of the objects , particularly 
disturbing under dynamic viewing conditions , i.e. either when the wearer had to turn his 
head fixing an object with his eyes or when he followed with his eyes a moving object.

This was a drawback of the development goal to keep the Varilux 1 design close to the 
characteristics of a bifocal,  where the far vision part was entirely exempt from aberrations 
and  the progression was modeling only the lower half of the lens. 
In the next step of his invention Maitenaz extended the aspherical design to the totality of 
the lens surface .
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