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7. Varilux 2, the physiological design 

The background

One major characteristic element of the Varilux 1 concept was to stay close to the 
structure of the bifocal lens with an upper aberation free half of the surface for far 
vision and a rather large "segment" for clear near vision . This segment was bounded by 
the unavoidable  aberrations which made it not always easy to get accustomed to the 
new lens. So in his following patents US 3 687 528 and US 3 910 691 Maitenaz 
described the progressive design for which the model was not the bifocal but the visual 
process. Introducing  the evolutive conics as orthogonal sections and an orthoscopic 
surface structure to preserve the orientation of the horizontal and vertical object lines it 
was possible to reduce the aberrations and to distribute them over the surface in a way 
not only considering the visual acuity but also the distortion under static and dynamic 
viewing conditions.The result of taking into account this global character of the visual  
process was the creation of a totally aspheric design for Varilux 2. .
The overall aspheric design of Varilux 2 was an enormous progress, it was the birth of 
the modern progressive lens and model for all the future lens generations .

Basic ideas 

The example of the Varilux 1 design shows that surfaces composed of circles as 
orthogonal sections give a rather high amount of lateral aberrations.

While  the astigmatism on the main meridian is zero as here the circle curvature  is 
exactly identical with the curvature of the main meridian (umbilical line) , in the 
periphery this is not true anymore. In a lateral point of this circle the vertical meridian of 
the surface -- i.e. the intersection curve between the surface and a vertical plane 
containing the surface normal in this point --is stronger curved  than the circle, i.e. in 
this lateral point we will find surface astigmatism increasing with the distance of this 
point from the main meridian. We cannot eliminate these aberrations, but we can 
reduce them. If for such a design one of the sections is a circle, then the sections below 
have to be curves, whose curvature is flattening to the edge whereas the curvature of 
the  sections above the circle is increasing with increasing x-coordinate. 

In the Varilux 2 design this general principle has been realized by the concept of the 
evolutive conics. According to an  example quoted in patent US 3 687 528 this evolution 
starts in the far vision portion with flattened ellipses, followed by a circle, elongated 
ellipses, a parabola and ending with hyperbola in the near vision portion. 

This structure of the surface, built of a group of evolutive conic sections, may be
considered as a first approximation. Another essential requirement for the Varilux 2 
construction is the so called orthoscopy, i.e. the distortion of horizontal and vertical lines 
should be as small as possible.  
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In order to obtain good orthoscopy the patent design includes two horizontal umbilical 
lines at Vz=+9° and -12° and two vertical isoprismatic lines at Vx=+22.5° and -22.5°, 
giving a constant horizontal component of the prismatic effect.

The results of the so calculated surface are given in Fig. 22 of the patent US 3 687 528,
which shows the curvatures of the orthogonal sections. In the following we will analyze 
the characteristic data of this design.

7.1 The Coordinate System 

Fig 1

In Fig 1 the main meridian is situated in the yz plane of a Cartesian coordinate system 
(x,y,z).  Moving from near vision to far vison z increases, the z-axis being tangent to a 
point in  between (for example the center of the finished lens where the prismatic effect 
is controlled). In the patent US 3 687 528 the vertical z-axis is identified with the y-
coordinate.

The orthogonal sections are described in a Cartesian coordinate sytem (ξ,η,ζ) moving 

with the orthogonal section.Where the section intersects the main meridian is the origin 
of this coordinate system, the zeta -axis being tangent to the principal meridian , 
increasing zeta meaning increasing z. So in this system the orthogonal section is

described by an equation between ξ and η, ξ- and x-values are identical .
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7.2 The principal meridian

The table of Fig 22 of the patent gives  the curvature radii of the orthogonal sections  
as a function of the spherical coordinates Vx and Vz ( see Fig18 of the patent US  3 687 
528 ). We will try to represent the row Vx=0 , which is the principal meridian, by an 
analytical function. All coordinates and lengths are given in mm.

Calculating the main meridian

From Fig 18 (patent) we deduce

≔z0 ((Vz)) ⋅76.80 sin
⎛
⎜⎝

⋅Vz ――
180

⎞
⎟⎠

Listing from Fig 22 the values of the curvature radius RM of the 
principal meridian together with the corresponding z0-values we get:

(Z0 values slightly modified 
to symmetrize the meridian)≔RM

68.35
65.88
63.97
63.13
63.97
65.88
68.35
70.30
71.29
73.88
75.57
76.40
75.57
73.88
71.29
68.35

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢⎣

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥⎦

≔Z0

−27.23
−23.54
−19.77
−15.92

−12
−8.03
−4.02
−1.61

0
4.02
8.03

12.02
15.96
19.87
23.71
27.48

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢⎣

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥⎦

The radius of curvature has a maximum of 76.40 mm and a minimum of 63.13 
mm. With an index of refraction of n=1.525 this corresponds  to a far vision 
diopter of 6.9 D and an add power of  1.45 D

A cubic spline interpolation gives the function Rm1(z0) which is graphically 
represented in Fig 2:
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≔S cspline (( ,Z0 RM))

≔Rm1 ((z0)) interp (( ,,,S Z0 RM z0))

≔z0 , ‥−30 −29.5 30
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Fig 2

Fig 3 shows that Rm1(z0) can be approximated by the following 
analytical sine -function

≔Rm ((z0)) +69.765 ⋅6.635 sin
⎛
⎜⎝

+―――
⋅2 z0

54.83
0.25

⎞
⎟⎠
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≔z0 , ‥−27 −26 27

Fig 3
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The tangents to the main meridian  in Vz=-12 and Vz=9 are parallel to the z-axis  
and in the far vision part above Vx =9 the power increases to the top of the 
design and in the near vision zone below Vx=-12 the power decreases to the 
bottom of the design.

Integrating the differential equation for the curvature K(z0) of the 
meridian 

＝――――――
Fm'' ((z0))

⎛
⎝ +1 Fm' ((z0))

2 ⎞
⎠

―
3

2

K ((z0)) ＝Fm ((z0)) x1 ((z0))

＝x1' ((z0)) x2 ((z0))

＝x2' ((z0)) ⋅K ((z0))
⎛
⎝ +1 x2 ((z0))

2 ⎞
⎠

―
3

2

≔K ((z0)) ―――
1

Rm ((z0))

≔D (( ,z0 X))

X
1

⋅⎛
⎝

+1 X
1

2 ⎞
⎠

―
3

2

K ((z0))

⎡
⎢
⎢
⎢
⎢⎣

⎤
⎥
⎥
⎥
⎥⎦

＝X ((z0))
x1 ((z0))
x2 ((z0))

⎡
⎢⎣

⎤
⎥⎦

≔u 6.298 mm ≔v 0.448

≔init
u
v

⎡
⎢⎣

⎤
⎥⎦

u and v are the initial conditions for Fm(z0) and D1Fm(z0)=Fm'(z0) in z0=30 
mm, estimated first from a circle with rf=74 mm ( tangent to the z-axis in z0=0) 
and then iteratively corrected, so that for z0=0 Fm(z0) and D1Fm(z0) are zero
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≔Z0i 30

≔Z0f −30

≔N 100

≔Sol AdamsBDF (( ,,,,init Z0i Z0f N D))

                    z0        x1=Fm    x2=Fm'(z0)

=Sol

30 6.298 0.448
29.4 6.033 0.436
28.8 5.775 0.425
28.2 5.523 0.413
27.6 5.279 0.402

⋮

⎡
⎢
⎢
⎢
⎢
⎢
⎣

⎤
⎥
⎥
⎥
⎥
⎥
⎦

Calculating the main meridian as a function of z0 : Fm(z0)

arranging the data in ascending order of z0:

≔data csort (( ,Sol 0))

        z0     X1=Fm(z0)    X2=D1Fm(z0)

=data

−30 7.253 −0.513
−29.4 6.949 −0.501
−28.8 6.652 −0.489
−28.2 6.362 −0.477

⋮

⎡
⎢
⎢
⎢
⎢⎣

⎤
⎥
⎥
⎥
⎥⎦

≔Z0 data
⟨⟨0⟩⟩

≔X1 data
⟨⟨1⟩⟩

≔X2 data
⟨⟨2⟩⟩
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≔S cspline (( ,Z0 X1))

≔Fm ((z0)) interp (( ,,,S Z0 X1 z0))

≔S cspline (( ,Z0 X2))

≔z0 , ‥−30 −29.5 30
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Fig 4

≔D1Fm ((z0)) interp (( ,,,S Z0 X2 z0))
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7.3 The characteristical data of the conic sections 

We assume that the orthogonal sections of the Varilux 2 design are conic sections and 
that the principal meridian is an umbilic.

Then the vertex equation of of a conic section  in the ( ξ,η)-system is 

＝η ⋅h
⎛
⎜
⎝

−1
‾‾‾‾‾‾‾‾

−1 ―――
ξ

2

⋅Rm h

⎞
⎟
⎠

where h is the half-axis of the conic section in direction of the η-axis. h>0 is an ellipse , 

h<0 an hyperbola and h→+/-∞ means a parabola. In paragraph 7.5  we calculate  the 
values of h for the different z0-values  using the figures  of  Fig 22 ( patent US 3 687 528) 
for the the curvature radii of the orthogonal sections. We will see that the orthogonal 
sections have a more complex characteristic than that of a conic section . The conic 
section geometry is only a first approximation which we will use in the following 
calculations.
In determining the conic section, we choose h so, that the curvature of the conic section 
and of the real orthogonal section of Fig 22 coincide for Vx=15°. The calculations of h in 
paragraph 7.5  gives 3 zones 

zone 1 for z0 values > -13.3: positive h-values,  i.e. ellipses
zone 2 for z0-values between -13.3 and -18.6: negative h, hyperbola
zone 3 for z0-values < -18.6: positive h, i.e. ellipses
for z0=-13.3 and z0=-18.6 there are two parabola , i.e. h is becoming infinity
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zone 1: z0> -13.3

The resulting values for the parameter h and the coordinate z0  are given in the following 
matrix:

≔data

−13.01 8000
−12.52 4500
−12.01 2650
−11.02 1200
−10.02 550
−9.03 271
−8.03 205
−7.03 160
−6.03 131
−5.03 109
−4.02 93.5
−1.61 70.2

0 59.18
4.02 43.73
8.03 37.22

12.01 35.72
15.97 37.92

18 41.3
19.88 45.28
23.73 61.97

26 85
27.52 97.94

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

Calculation  of the half-axis h1(z0) as a function of z0

≔Z0 data
⟨⟨0⟩⟩

≔H data
⟨⟨1⟩⟩

Cubic spline interpolation

≔S cspline (( ,Z0 H))

≔h11 ((z0)) interp (( ,,,S Z0 H z0))
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≔z0 , ‥−15 −14.5 26

=z0

−15
−14.5
−14
−13.5
−13
−12.5

⋮

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

=h11 ((z0))

⋅5.928 10
4

⋅3.883 10
4

⋅2.412 10
4

⋅1.414 10
4

⋅7.905 10
3

⋅4.4 10
3

⋮

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

In order to get a smooth transition until the second derivative in the 
range between -5 and -14 ,where the curve accelerates its growth, 
we insert a smoothing step

≔Z01

−15
−14.5
−14

−13.5
−13

−12.5
−12

−11.5
−11

⋮

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

≔H1

⋅5.92828 10
4

⋅3.88307 10
4

⋅2.41186 10
4

⋅1.41442 10
4

⋅7.90535 10
3

⋅4.39968 10
3

⋅2.62499 10
3

⋅1.69794 10
3

⋅1.18319 10
3

⋮

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

≔ss1 supsmooth (( ,Z01 H1))

≔S cspline (( ,Z01 ss1))

≔h11 ((z0)) interp (( ,,,S Z01 ss1 z0))
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Taking into account the symmetry around Vz=9°, i.e. z0=12.01, we obtain the half-
diameter  h1 for z0>-13.3 (infinity threshold , see below) 

≔h1 ((z0)) ‖
‖
‖
‖
‖
‖

|
|
|
|

|

|
|
|
|
|

if

else

≤z0 12.01
‖
‖ h11 ((z0))

‖
‖ h11 (( −24.02 z0))

Because of the strong increase for z0-values below -5 we present h1(z0) in Fig 6 and 
7 with 2 different scales  

≔z0 , ‥−3 −2.5 27
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53.5

58

62.5

67

71.5

76

80.5

35.5

40

85

3 6 9 12 15 18 21 24-3 0 27

z0

h1 ((z0))

Fig 6

and compare it with the initial discrete data H of Fig 22 (patent) 
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≔z0 , ‥−13 −12.5 27
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-4.5 0 4.5 9 13.5 18 22.5 27-13.5 -9 31.5
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Fig 7

Where is h1(z0) becoming infinity  ?

≔z0 , ‥−13.60 −13.50 −13.00

=h1 ((z0))

⋅2.28 10
4

⋅2.103 10
4

⋅1.933 10
4

⋅1.772 10
4

⋅1.62 10
4

⋅1.476 10
4

⋅1.342 10
4

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢⎣

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥⎦

=z0

−13.6
−13.5
−13.4
−13.3
−13.2
−13.1
−13

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

z0=-13.3 was selected being sufficiently high to be practically infinity 
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zone 3: z0 < -18.6

 Calculation  of the half-axis h3(z0) as a function of z0

As we can see from Fig 22 of the Varilux 2-patent in the lower half of the table the 
surface is symmetrical to to the horizontal line Vz=-12 which corresponds to 
z0=-15.97 . So there is a second infinity point for -18.6 and the h-values for 
z0<-18.6 are given by    

≔h3 ((z0)) h1 (( −⋅−2 15.97 z0))

zone 2 : -18.6 < z0 < -13.3

The calculations of paragraph 7.5 give the following h-values for z0 between -18.6 
and -13.3

≔data

−18.42 −7862
−18.19 −4142
−17.93 −2812
−16.95 −1347
−15.97 −999
−14.98 −1316

−14 −2569
−13.75 −3547
−13.50 −5976

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

Calculation  of the half-axis h2(z0) as a function of z0

≔Z0 data
⟨⟨0⟩⟩

≔H data
⟨⟨1⟩⟩

cubic spline interpolation

≔S cspline (( ,Z0 H))

≔h21 ((z0)) interp (( ,,,S Z0 H z0))
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taking into account the symmetry around z0=-15.97

≔h211 ((z0)) ――――――――――
+h21 ((z0)) h21 (( −⋅−2 15.97 z0))

2

Smoothing process

≔z0 , ‥−20.5 −20.25 −11.5

=h211 ((z0))

− ⋅3.648 10
5

− ⋅2.711 10
5

− ⋅1.952 10
5

− ⋅1.353 10
5

− ⋅8.949 10
4

− ⋅5.578 10
4

− ⋅3.231 10
4

− ⋅1.719 10
4

⋮

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

≔Z01

−20.5
−20.25

−20
−19.75
−19.5

−19.25
−19

⋮

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

≔H1

−⎛⎝ ⋅3.64785 10
5 ⎞⎠

−⎛⎝ ⋅2.71095 10
5 ⎞⎠

−⎛⎝ ⋅1.9525 10
5 ⎞⎠

−⎛⎝ ⋅1.35349 10
5 ⎞⎠

−⎛⎝ ⋅8.94921 10
4 ⎞⎠

−⎛⎝ ⋅5.57798 10
4 ⎞⎠

−⎛⎝ ⋅3.23116 10
4 ⎞⎠

⋮

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢⎣

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥⎦

≔ss2 supsmooth (( ,Z01 H1))

≔S cspline (( ,Z01 ss2))

≔h2 ((z0)) interp (( ,,,S Z01 ss2 z0))
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Fig 8

It was not possible to get a closer approximation of the curve to  the discrete 
points without sacrificing a smooth second derivative in the coordinate regions 
near to -13.3 and -18.6.

If we now sum up the calculations for the different coordinate regions we get the 
following result.

The function of the half-axis h(z0) covering the whole z0-range                        
between -27 and +27 mm 

≔h ((z0)) ‖
‖
‖
‖
‖
‖
‖
‖
‖
‖

|
|
|
|
|
|
|
|

|

|
|
|
|
|
|
|
|

|

if

else

>z0 −18.6
‖
‖
‖
‖
‖
‖

|
|
|
|
|

if

else

>z0 −13.3
‖
‖ h1 ((z0))

‖
‖ h2 ((z0))

‖
‖ h3 ((z0))

The graph 9 illustrates the structure of the design with evolutive conic sections , which we 
will discuss in detail in chapter 7.6. Fig 9a shows the upper lens portion with elliptical 
orthogonal sections more in detail. 
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≔z0 , ‥−27 −26.9 27
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7.4 Geometry and equations of the progressive surface

vertex equation of a conic section (with an umbilical main meridian)

≔η (( ,z0 ξ)) h ((z0))
⎛
⎜
⎝

−1
‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾

−1 ―――――
ξ

2

⋅h ((z0)) Rm ((z0))

⎞
⎟
⎠

So in the (x,y,z)-coordinate system we get for the surface as a function of the 

parameter z0, ξ

≔x (( ,z0 ξ)) ξ

≔y (( ,z0 ξ)) +Fm ((z0)) ――――――
η (( ,z0 ξ))

‾‾‾‾‾‾‾‾‾‾‾‾
+1 D1Fm ((z0))

2

≔z (( ,z0 ξ)) −z0 ⋅η (( ,z0 ξ)) ――――――
D1Fm ((z0))

‾‾‾‾‾‾‾‾‾‾‾‾
+1 D1Fm ((z0))

2

7.4.1 Fundamental Forms

Definitions  of the derivatives 

≔r (( ,z0 ξ))
x (( ,z0 ξ))
y (( ,z0 ξ))
z (( ,z0 ξ))

⎡
⎢
⎢⎣

⎤
⎥
⎥⎦

≔xz0 (( ,z0 ξ)) ――
d

dz0
x (( ,z0 ξ))

≔yz0 (( ,z0 ξ)) ――
d

dz0
y (( ,z0 ξ))

≔zz0 (( ,z0 ξ)) ――
d

dz0
z (( ,z0 ξ))
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≔rz0 (( ,z0 ξ))
xz0 (( ,z0 ξ))
yz0 (( ,z0 ξ))
zz0 (( ,z0 ξ))

⎡
⎢
⎢⎣

⎤
⎥
⎥⎦

≔xξ (( ,z0 ξ)) ――
d

dξ
x (( ,z0 ξ))

≔yξ (( ,z0 ξ)) ――
d

dξ
y (( ,z0 ξ))

≔zξ (( ,z0 ξ)) ――
d

dξ
z (( ,z0 ξ))

≔rξ (( ,z0 ξ))
xξ (( ,z0 ξ))
yξ (( ,z0 ξ))
zξ (( ,z0 ξ))

⎡
⎢
⎢⎣

⎤
⎥
⎥⎦

≔xz0z0 (( ,z0 ξ)) ――
d

d

2

z0
2

x (( ,z0 ξ))

≔yz0z0 (( ,z0 ξ)) ――
d

d

2

z0
2

y (( ,z0 ξ))

≔zz0z0 (( ,z0 ξ)) ――
d

d

2

z0
2

z (( ,z0 ξ))

≔rz0z0 (( ,z0 ξ))
xz0z0 (( ,z0 ξ))
yz0z0 (( ,z0 ξ))
zz0z0 (( ,z0 ξ))

⎡
⎢
⎢⎣

⎤
⎥
⎥⎦

≔xξξ (( ,z0 ξ)) ――
d

d

2

ξ
2

x (( ,z0 ξ))

≔yξξ (( ,z0 ξ)) ――
d

d

2

ξ
2

y (( ,z0 ξ))

≔zξξ (( ,z0 ξ)) ――
d

d

2

ξ
2

z (( ,z0 ξ))
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≔rξξ (( ,z0 ξ))
xξξ (( ,z0 ξ))
yξξ (( ,z0 ξ))
zξξ (( ,z0 ξ))

⎡
⎢
⎢⎣

⎤
⎥
⎥⎦

≔xz0ξ (( ,z0 ξ)) ――
d

dξ

⎛
⎜
⎝
――

d

dz0
x (( ,z0 ξ))

⎞
⎟
⎠

≔yz0ξ (( ,z0 ξ)) ――
d

dξ

⎛
⎜
⎝
――

d

dz0
y (( ,z0 ξ))

⎞
⎟
⎠

≔zz0ξ (( ,z0 ξ)) ――
d

dξ

⎛
⎜
⎝
――

d

dz0
z (( ,z0 ξ))

⎞
⎟
⎠

≔rz0ξ (( ,z0 ξ))
xz0ξ (( ,z0 ξ))
yz0ξ (( ,z0 ξ))
zz0ξ (( ,z0 ξ))

⎡
⎢
⎢⎣

⎤
⎥
⎥⎦

1.Fundamental Form and unit normal vector

≔E (( ,z0 ξ)) ⋅rz0 (( ,z0 ξ)) rz0 (( ,z0 ξ))

≔F (( ,z0 ξ)) ⋅rz0 (( ,z0 ξ)) rξ (( ,z0 ξ))

≔G (( ,z0 ξ)) ⋅rξ (( ,z0 ξ)) rξ (( ,z0 ξ))

≔No (( ,z0 ξ)) ――――――――
⨯rz0 (( ,z0 ξ)) rξ (( ,z0 ξ))

‖‖ ⨯rz0 (( ,z0 ξ)) rξ (( ,z0 ξ))‖‖
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2. Fundamental Form

≔L (( ,z0 ξ)) ⋅rz0z0 (( ,z0 ξ)) No (( ,z0 ξ))

≔M (( ,z0 ξ)) ⋅rz0ξ (( ,z0 ξ)) No (( ,z0 ξ))

≔N (( ,z0 ξ)) ⋅rξξ (( ,z0 ξ)) No (( ,z0 ξ))

≔H1 (( ,z0 ξ)) −+⋅E (( ,z0 ξ)) N (( ,z0 ξ)) ⋅G (( ,z0 ξ)) L (( ,z0 ξ)) ⋅⋅2 F (( ,z0 ξ)) M (( ,z0 ξ))

≔H2 (( ,z0 ξ)) −⋅E (( ,z0 ξ)) G (( ,z0 ξ)) F (( ,z0 ξ))
2

≔H3 (( ,z0 ξ)) −⋅L (( ,z0 ξ)) N (( ,z0 ξ)) M (( ,z0 ξ))
2

Principal curvatures 

≔K1 (( ,z0 ξ)) ―――――――――――――――――

⎛
⎝ +H1 (( ,z0 ξ))

‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾
−H1 (( ,z0 ξ))

2
⋅4 H2 (( ,z0 ξ)) H3 (( ,z0 ξ))

⎞
⎠

⋅2 H2 (( ,z0 ξ))

≔K2 (( ,z0 ξ)) ―――――――――――――――――

⎛
⎝ −H1 (( ,z0 ξ))

‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾
−H1 (( ,z0 ξ))

2

⋅4 H2 (( ,z0 ξ)) H3 (( ,z0 ξ))
⎞
⎠

⋅2 H2 (( ,z0 ξ))

7.4.2 Mean optical power POW  and Astigmatism AST

≔POW (( ,z0 ξ)) ⋅525 ――――――――
(( +K1 (( ,z0 ξ)) K2 (( ,z0 ξ))))

2

≔AST (( ,z0 ξ)) ⋅525 (( −K1 (( ,z0 ξ)) K2 (( ,z0 ξ))))
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Check, that the principal meridian is an umbilical line

≔ξ 0 ≔z0 , ‥−25 −20 25

=AST (( ,z0 ξ))

0.00051
0.00005
0.00018
0.0002
0.00046
0.00017
0.00009
0.00063
0.00001
0.00026
0.00008

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

We see that, as expected, the astigmatism on the main meridian is very 
small, everywhere at least less than 0.001 D  

Lines of constant mean optical power (Isopower plot )

Loop calculation

≔ξmin −24 ≔ξmax 24 ≔n 22 ≔i ‥0 n

≔∆ξ ―――――
−ξmax ξmin

n
≔ξ
i

+ξmin ⋅i ∆ξ

≔z0min −24 ≔z0max 24

≔∆z0 ―――――
−z0max z0min

n
≔z0
i

+z0min ⋅i ∆z0
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≔MPOW (( ,ξ z0)) ‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖‖

|
|
|
|
|
|
|
|
|
|
|
|

for ∊ |
|
|
|
|
|
|

|

i ‥0 last ((ξ))
‖
‖
‖
‖
‖
‖
‖‖

for ∊ |
|
|
|
|

|

j ‥0 last ((z0))
‖
‖
‖
‖
‖
‖

←MPow
,i j

POW ⎛
⎝

,z0
j

ξ
i
⎞
⎠

←Mz
,i j

z0
j

←Mx
,i j

x ⎛
⎝

,z0
j

ξ
i
⎞
⎠

return
Mx
Mz

MPow

⎡
⎢
⎢⎣

⎤
⎥
⎥⎦

≔ISOPOW =MPOW (( ,ξ z0))
[23 × 23]
[23 × 23]
[23 × 23]

⎡
⎢
⎢⎣

⎤
⎥
⎥⎦

Mathcad program

≔FA (( ,ξ z0)) POW (( ,z0 ξ))

≔ξlow −24 ≔ξhigh 24 ≔ξn 23

≔z0low −24 ≔z0high 24 ≔z0n 23

≔FA CreateMesh (( ,,,,,,FA ξlow ξhigh z0low z0high ξn z0n))
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In order to interpret the isopower lines correctly remember that the far vision power is 6.9 
D and the Add 1.45 D. 
Fig 10 shows the general structure of the isopowerlines in steps of 0.5 D. The isopower-
plot in 0.125 steps ( Fig 10a ) shows the add power increase in detail and will help us to 
determine the length of the power progression.

7.5

8

7.5

7.5

7

8

8

7

7

8 8-15

-10

-5

0

5

10

15

20

-25

-20

25

-15 -10 -5 0 5 10 15 20-25 -20 25

6.5 7 7.5 8 8.5 9 9.55.5 6 10
ISOPOW

Loop calculation

7.5

8

7.5

7.5

7

8

8

7

78 8-15

-10

-5

0

5

10

15

20

-25

-20

25

-15 -10 -5 0 5 10 15 20-25 -20 25

6.5 7 7.5 8 8.5 9 9.55.5 6 10
FA

Fig 10

Mathcad program
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7.5

7.6

7.4

7.8

7.3

7.9

7.1

8

7.6

7.6

7.5

7.5

7.8

7.8

7

8.17.4

7.4

7.9

7.9

8

8

7.3

7.3
8.3

7.1 7.1

8.1

8.1

7

7
6.9

8.3
8.3

7.3
7.3

6.8
6.8

8 8

6.9

-15

-10

-5

0

5

10

15

20

-25

-20

25

-15 -10 -5 0 5 10 15 20-25 -20 25

6.56.66.86.9 7 7.17.37.47.57.67.87.9 8 8.16.36.4 8.3
FA

Fig 10 a

Lines of constant astigmatism (Isoastigmatism plot)

Loop calculation

≔ξmin −24 ≔ξmax 24 ≔n 22 ≔i ‥0 n

≔∆ξ ―――――
−ξmax ξmin

n
≔ξ
i

+ξmin ⋅i ∆ξ

≔z0min −24 ≔z0max 24

≔∆z0 ―――――
−z0max z0min

n
≔z0
i

+z0min ⋅i ∆z0
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≔MAST (( ,ξ z0)) ‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖
‖‖

|
|
|
|
|
|
|
|
|
|
|
|

for ∊ |
|
|
|
|
|
|

|

i ‥0 last ((ξ))
‖
‖
‖
‖
‖
‖
‖‖

for ∊ |
|
|
|
|

|

j ‥0 last ((z0))
‖
‖
‖
‖
‖
‖

←MAsti
,i j

−AST ⎛
⎝

,z0
j

ξ
i
⎞
⎠

0.1

←Mz
,i j

z0
j

←Mx
,i j

x ⎛
⎝

,z0
j

ξ
i
⎞
⎠

return
Mx
Mz

MAsti

⎡
⎢
⎢⎣

⎤
⎥
⎥⎦

(In order to see the characteristics of the design better for low astigmatism 
values (particularly for the two horizontal umbilical lines ) we shifted the zero 
point by 0.1 D to the right).

≔ISOAST =MAST (( ,ξ z0))
[23 × 23]
[23 × 23]
[23 × 23]

⎡
⎢
⎢⎣

⎤
⎥
⎥⎦

Mathcad program

≔FA (( ,ξ z0)) −AST (( ,z0 ξ)) 0.1

≔ξlow −24 ≔ξhigh 24 ≔ξn 23

≔z0low −24 ≔z0high 24 ≔z0n 23

≔FA CreateMesh (( ,,,,,,FA ξlow ξhigh z0low z0high ξn z0n))
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0.5

0.51

1

0.5

0.5

0.5

0.5

1.5

1.5

1

1

1
1

1.51.5

1.5 1.5

1
1

1.5 1.5
-15

-10

-5

0

5

10

15

20

-25

-20

25

-15 -10 -5 0 5 10 15 20-25 -20 25

1.5 2 2.5 3 3.50.5 1 4
ISOAST

Loop calculation

Fig 11

0.5

0.5

1

1

0.5

0.5

0.5

0.5

1.5

1.5

1

1

1
1

1.51.5

1.5 1.5

1
1

1.5 1.5
-15

-10

-5

0

5

10

15

20

-25

-20

25

-15 -10 -5 0 5 10 15 20-25 -20 25

1.5 2 2.5 3 3.50.5 1 4
FA

Mathcad program
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7.5 Calculation  of the half-axis h(z0) of the conic sections
( according to table fig 22 of patent US 3 687 528)

In table fig 22 of the patent the radii of the orthogonal sections, which (in a first 
approximation) we assume to be conical sections, are given for different Vx- and Vz-
values. So we will introduce for the following calculation Vx and Vz as the independant 
variables in the equations for the conic sections 

≔ξ ((Vx)) ⋅76.80 sin
⎛
⎜⎝

⋅Vx ――
180

⎞
⎟⎠

≔z0 ((Vz)) ⋅76.80 sin
⎛
⎜⎝

⋅Vz ――
180

⎞
⎟⎠

≔η (( ,Vz Vx)) h ((z0 ((Vz))))
⎛
⎜
⎜⎝

−1
‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾‾

−1 ――――――――
ξ ((Vx))

2

⋅h ((z0 ((Vz)))) Rm ((z0 ((Vz))))

⎞
⎟
⎟⎠

≔ηξ (( ,Vz Vx)) ――――――

――
d

dVx
η (( ,Vz Vx))

――
d

dVx
ξ ((Vx))

≔ηξξ (( ,Vz Vx)) ――――――

――
d

dVx
ηξ (( ,Vz Vx))

――
d

dVx
ξ ((Vx))

The orthogonal section has then the radius of curvature : 

≔ρ (( ,Vz Vx))
⎛
⎜
⎜
⎜⎝

―――――――
ηξξ (( ,Vz Vx))

⎛
⎝ +1 ηξ (( ,Vz Vx))

2 ⎞
⎠

―
3

2

⎞
⎟
⎟
⎟⎠

−1

If we want to approximate the sections Vz=const in Fig 22 by  conic sections, we have to 
choose a specific value of Vx, called Vxr, where the radius of curvature ρ is identical with 
the curvature value in Fig 22. We will  call this radius of curvature ρ(Vz,Vxr)=ρ0(Vz) and 
choose Vxr=15° . Compared with other tested values , Vxr=6 and Vxr=9, the fitting 
between numerical values of the table and the calculated conic section is the best. The 
half-Axis H (see paragraph 7.3)  in the direction of the η-axis  is given by the expression: 
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≔H (( ,,Vz Vxr ρ0)) ⋅Rm ((z0 ((Vz)))) ――――――――――――――――
ξ ((Vxr))

2

−ξ ((Vxr))
2

⋅Rm ((z0 ((Vz))))
2

⎛
⎜
⎜
⎝

−
⎛
⎜⎝
―――――

ρ0

Rm ((z0 ((Vz))))

⎞
⎟⎠

―
2

3

1

⎞
⎟
⎟
⎠

In the following we calculate H for the different  orthogonal sections Vz=-21° to Vz=21°
For the sections Vz=+/-21° and +/- 18° where in  table Fig 22 there are no ρ0-values for 

Vxr= 15° we take the Vxr=15° values for Vz=-3° and -6° respectively ( surface symmetry).

Generally holds :

≔Vxr 15 =ξ ((Vxr)) 19.88

The results for the different Vz are :

≔Vz −21 =z0 ((Vz)) −27.52 =Rm ((z0 ((Vz)))) 68.2 ≔ρ0 70.72

=H (( ,,Vz Vxr ρ0)) 95.78

≔Vz −18 =z0 ((Vz)) −23.73 =Rm ((z0 ((Vz)))) 65.63 ≔ρ0 71.87

=H (( ,,Vz Vxr ρ0)) 205.15

≔Vz −15 =z0 ((Vz)) −19.88 =Rm ((z0 ((Vz)))) 63.81 ≔ρ0 72.86

=H (( ,,Vz Vxr ρ0)) 1346.59

≔Vz −12 =H (( ,,Vz Vxr ρ0)) −5506.66

≔Vz −9 =H (( ,,Vz Vxr ρ0)) 1446.1
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≔Vz −6 =H (( ,,Vz Vxr ρ0)) 305.58

≔Vz −3 =H (( ,,Vz Vxr ρ0)) 140.01

≔Vz −1.2 =z0 ((Vz)) −1.608 =Rm ((z0 ((Vz)))) 70.201 ≔ρ0 70.20

=H (( ,,Vz Vxr ρ0)) 70.2

≔Vz 0 =H (( ,,Vz Vxr ρ0)) 62.32

≔Vz 3 =H (( ,,Vz Vxr ρ0)) 49.69

≔Vz 6 =H (( ,,Vz Vxr ρ0)) 43.71

≔Vz 9 =H (( ,,Vz Vxr ρ0)) 42.23

≔Vz 12 =H (( ,,Vz Vxr ρ0)) 44.67

≔Vz 15 =H (( ,,Vz Vxr ρ0)) 51.68

≔Vz 18 =H (( ,,Vz Vxr ρ0)) 65.41

≔Vz 21 =H (( ,,Vz Vxr ρ0)) 90.27
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7.6 Analysis of design and calculation

7.6.1 Are the orthogonal sections conics ?

One essential progress of the V2- invention is the fact, that the orthogonal sections are 
no circles anymore, but curves whose curvature is changing fom the vertical meridian to 
the periphery . In the near vision part the curvature of the sections is thereby decreasing 
with increasing distance from the meridian and increasing in the far vision .

Let us now analyze how good the calculated conic sections  approximate the figures of 
table fig 22 . We consider the table rows Vz=-18°, -12°,0°, 9° and 18°. ρ is the 

curvature radius of the calculated orthogonal section section while, RHO are the values 

from table Fig 22 

≔Vx , ‥0 3 21 ≔VX

0
3
6
9

12
15
18
21

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

≔Vz −18 =z0 ((Vz)) −23.73 ≔RHO

65.88
67.22
68.43
69.15
70.16
71.87
73.68
75.14

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

69

71

73

75

77

79

81

83

65

67

85

4 6 8 10 12 14 16 18 200 2 22

Vx

VX

ρ (( ,Vz Vx))

RHO
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≔Vz −12 =z0 ((Vz)) −15.97 ≔RHO

63.13
65.23
67.30
68.70
70.25
75.37
76.40

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

67

69

71

73

75

77

79

81

83

63

65

85

4 6 8 10 12 14 16 18 200 2 22

Vx

VX

ρ (( ,Vz Vx))

RHO

≔Vz 0 =z0 ((Vz)) 0 ≔RHO

71.29
71.10
70.91
70.16
69.79
69.70
69.15
68.97

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

70

71

72

73

74

75

76

77

68

69

78

4 6 8 10 12 14 16 18 200 2 22

Vx

VX

ρ (( ,Vz Vx))

RHO
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≔Vz 9 =z0 ((Vz)) 12.01
≔RHO

76.40
74.61
72.86
71.01
69.33
67.73
66.12

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

64

66

68

70

72

74

76

78

60

62

80

4 6 8 10 12 14 16 18 200 2 22

Vx

VX

ρ (( ,Vz Vx))

RHO

≔Vz 18 =z0 ((Vz)) 23.73 ≔RHO

71.29
71.10
70.91
70.16
69.79
69.70
69.15
68.97

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

70

71

72

73

74

75

76

77

68

69

78

4 6 8 10 12 14 16 18 200 2 22

Vx

VX

ρ (( ,Vz Vx))

RHO
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The orthogonal sections of Fig 22 (patent) are no exact conics as it is also mentioned in 
the patent. The increase or decrease of the curvature radius  from the principal 
meridian to the periphery  in a first rough approximation is nearly linear, particularly 
obvious for Vz=9 . In a second approximation we see the superposition of a sine-like 
modulation.
Notwithstanding in our calculations we have maintained the model of the evolutive 
conic sections. Consequently the results cannot reproduce exactly the results of the 
patent but we will see that the characteristical design features can nevertheless be 
demonstrated.  

7.6.2 The evolutive conic sections

If we consider the approximation by conics having exactly the same curvature for 
Vxr =15 °  as the sections of Fig 22 of the  patent, we get for the half axes of the conic 
sections h(z0) the results of fig 9 and fig 9a.

In these two graphs we see an evolution of the type of conical section along the 
meridian. Starting upwards from  Vz=-12°, i.e. the meridian point with the steepest 
curvature,  the sections are at first hyperbola (h<0) until z0=-13.3, where the section 
becomes a parabola. Moving further to positive z0-values we find elongated ellipses 
until Vz=-1.15°, i.e. z0= -1.54, where we have a circle 

≔Vz −1.15 =z0 ((Vz)) −1.541

=ρ (( ,Vz Vx))

70.251
70.251
70.251
70.251
70.251
70.251
70.251
70.251

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

After the circle the sections in the FV part become oblate ellipses. Going downwards 
from Vz=-12° the sections start with hyperbolas,then a parabola at z0=-18.6   
followed by elongated ellipses.
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As we know, the surface is symmetrical to the horizontals Vz=-12° and Vz=9°. Thus we 
should expect other circles  for Vz=-22.8° which is outside of the considered range and 
Vz=19.2° . For Vz=19.372° we find an exact circle:

≔Vz 19.372 =z0 ((Vz)) 25.475

=ρ (( ,Vz Vx))

69.582
69.582
69.582
69.582
69.582
69.582
69.582
69.581

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

7.6.3 Secondary umbilical lines

One reason that the orthogonal sections are no exact conics was the intention to reduce 
the distortion of horizontal and vertical lines to a maximum . Bernard Maitenaz achieved 
this goal in introducing isoprismatic lines in the lens design.

Horizontal lines with a constant vertical component of the prismatic effect are maintaining 
the orientation of horizontal lines, while a vertical line with constant horizontal components 
of the prismatic effect correct the distortion of verticals. The  lines with constant vertical 
deflection have been executed as two secondary umbilics positioned at the FV reference 
point Vx=9° and at the NV reference point Vx=-16° , the isoprismatic lines for the 
horizontal component have been placed symmetrically at Vx+/- 22.5 °. We will discuss the 
properties of this geometry later in the chapter "Orthoscopy" (chapter 8).

7.6.4 Astigmatism-and power characteristics

The fact that the lines with constant  vertical prismatic effect  have been designed as 
horizontal umbilics  can  be ientified in Fig 3, showing  the main meridian, and in
Fig 11, the Isoastigmatism plot .
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In order to construct a horizontal umbilical line in a point of the vertical principal meridian 
and perpendicular to this meridian, the principal meridian has to reach a maximum or a 
minimum of curvature in the points of intersection. Thus figure 3 shows a graph of the 
main meridian curvature with horizontal tangents  for Vz=-12° and Vz=9°. Studying the 
Isoastigmatism plots we see that the zones exempt from aberrations are centered around 
the lines Vz=-12° and Vz=9°, where the secondary umbilics have been positioned .

The astigmatism maximum is with 1.5 D , i.e. about the value of the add power and 
thereby neatly lower than the peripheral astigmatismus of the relatively "hard" Varilux 1 
design, with values of 3 x add power and more. So Varilux 2 represented  an enormous 
progress for the the adaptation and the visual comfort of progressive lenses for the 
wearer.

According to Figure 10 a the effective length of the power progression of the patent design 
is about 18 mm, if we define it by the distance of the two points on the meridian with 
((FV-power +0.12 D) and (NV-power -0.12 D) ). The length of the power increase for 
Varilux 1 add 2 is about 12 to 14 mm. Besides the optical modulation by the evolutive 
conics, the longer progression is an additional feature why the design of the V2-patent is 
much softer than the V1 type -design.

If we have a look on the figures 10 and 10 a , we notice a soft and continuous power 
increase in the central part and  two symmetrically situated  pairs of "islands" in the 
periphery. One "island" pair represents a power increase in the lateral upper part of the 
progression. The other " island" pair is the result of a power decrease in the lateral lower 
part of the progression. Typical for the design in the patent is the inversion of the power 
change above the far vision- and below the near vision- reference point.

7.6.5 Varilux 2 on the market

Was the lens sold under the brandname Varilux 2 identical with the lens design specified in 
the patent ?

In the patent US 4 315 673  Fig 8 b represents the average of several measurements of 
Varilux 2 lenses for the add 3 . As  the peripheral astigmatism is roughly proportional to 
the add power (for mono-design lenses), we divide the astigmatism figures given in Fig 8 b 
by two and get a rough approximation for the astigmatism pattern  of a commercial Varilux 
2 for add 1.5 (Fig 12 below).
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Fig 12

Even if we take into account that the manufacturing process will change the structure of 
the theoretical design, it is highly probable, that the measured lens has not exactly the  
design given in the Varilux 2 patent. 

The symmetry in the  design with respect to the 2 horizontals in the FV- and  NV-part does 
not exist anymore. It is difficult to measure the effective progression length in the graph of 
figure 12, but it is certainly shorter than in the patent. In the near vision part the power 
stabilizes about 3 mm above the near vision reference point BN and above the far vision 
point BF the power decrease of the patent is replaced by a substantially stabilized zone.  
As in the patent the maximum value of the astigmatism is about 1.5 D and the aberrations 
extend into the lateral FV zone .


