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11. Varilux Comfort, natural vision by 

large viewing zones and a soft periphery 

 

A new design generation 

 

From about 1980 on, after the years of the Varilux invention and market introduction, the different 

designs developed by the Essilor competitors made the new spectacle lens concept increasingly 

popular. These designs could be roughly divided in two type classes. The first type of surface was 

the “hard design”, characterized by large viewing zones for far and near vision, a rather short 

power increase and moderate to strong lateral astigmatism. The second lens type was the “soft 

progressive design” distinguished by a longer progression channel with smaller FV and NV fields and 

low aberrations in the periphery. The “hard” type was well adapted for static viewing conditions, for 

example reading, whereas the “soft” type was very performant for dynamic viewing situations as 

head and eye movements. 

To overcome these boundaries and to develop a lens combining the advantages of both types 

allowing the wearer to see ”almost naturally” was the challenge for a new lens generation. 

The development of a power profile, which minimizes the physiological effort of lowering the head 

and the eyes when reading, is described by Christian Miège and Claude Pedrono in a scientific paper 

[1] and in the patents US 5 270 745 and US 5 272 495. They propose a principal meridian  

consisting substantially of three straight line segments: the first segment is extending vertically 

from the top of the lens to the fitting center, the second segment is extending obliquely from the 

fitting center to the point where the power increase reaches 85% of the add power, and the third 

segment is starting from this point until the bottom of the lens passing through the near vision 

reference point [2].  

In the US patent 5 488 442 the inventors C. Harsigny, C. Miege, J.P. Chauveau and F. Asbahs  

specify the characteristics of the surface design which combines the rather short meridian of        

US 5 270 745 with a soft lens periphery. They conclude that power and surface cylinder gradients 

have a primordial importance for the quality of extra-foveal and dynamic vision. The patent includes 

quantitative conditions for the location and the maximum value of the gradients. 
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Fig 1: Patent US 5 488 442, Varilux Comfort add 2 

Finally, at this time a powerful optimization tool was ready for a first test: the design loop [3]. This 

notion specifies an iterative process improving step by step the geometry of the lens taking into 

account the feedback of clinical trials. 

For the calculation of such a new design, the mathematical tools used until now were not flexible 

enough, but in the 1980’s a new method allowing to calculate freeform surfaces made its entry into 

the field of spectacle lens computation (for example [4]). 

 

11.1 Freeform surfaces built with splines  

The designs in the foregoing chapters were calculated following the concept of a central backbone, 

the main meridian, and orthogonal surface sections affixed to it. The orthogonal sections were 

given by rather simple functions with a limited number of parameters. For Varilux 2 as well as  for 

Progressif R, after taking into account the condition that the meridian is an umbilic, only one 

parameter remains for the modeling of the orthogonal section. Consequently the surfaces 

generated by these sections were far from representing the optimum geometry  for the 

minimization of aberrations. In order to bypass this severe restriction, the Varilux 2 design in the 

periphery departs from the exact conic section geometry  in constructing secondary umbilics and 

isoprismatic lines. 
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What the designer is looking for, is a mathematical method which provides the freedom to compute 

a general aspheric surface directly according to the specifications, independent from a limited 

number of variables and the corresponding number of conditions to define them. 

Freeform surfaces were and are customary in the shipbuilding, aircraft and automotive industry and 

the physical splines, for example wooden planks bent around pegs laid out on the floor, were used 

already for designing during World War Two. Isaac Jacob Schoenberg introduced the notion of the 

mathematical spline. You will find many articles about the history of splines on the internet. In the 

late 1950’s and in the early 1960’s Citroen, Renault and General Motors were modeling car bodies 

using splines or similar techniques. Today computer aided design is applied for construction work in 

all technical branches. And this is by far not all, …. if you watched the liquid metal cyborg in 

“Judgement Day”  you saw splines in action.  

A simple definition is the following one: 

A spline of degree k is a function that is piecewise-defined by polynomial functions of degree k, and 

at the places where the polynomial pieces connect (which are known as knots) it is (k-1) times 

continuously differentiable  

 

In the optimization process described here we will consider uniform cubic splines i.e. polynomials of 

degree 3 with knots, which are equally spaced. Any spline function of degree 3 defined over a 

uniform knot sequence can be represented as a linear combination of uniform cubic Basis splines 

(B-splines). Cubic B-splines have a non-zero value (its ”support”) over only 4 successive segments 

and at the knots the cubic spline, its first and second derivative are continuous (C2 continuity). And 

this characteristic is exactly the minimum requirement we need, if we want to describe and analyze 

the curvature and the astigmatism of an optical surface 

The optimization method to create the surface will be an approximation technique: the surface shall 

pass as close as possible the given control vertices. These control points represent the surface or 

one of the surface characteristics which we want to realize. The advantage using B-splines is local 

control, which mean, that altering the position of a data point changes the surface only in the 

neighborhood of this point (if you will try to optimize a progressive surface you will find this is still 

enough work to do). 

There are many text-books introducing to splines in geometric modeling, the book “Splines for use 

in Computer Graphics & Geometric Modeling”, written by the “Killer B’s” offers good explanations 

and a clear structure [5]. 

 

 

 

http://en.wikipedia.org/wiki/Function_%28mathematics%29
http://en.wikipedia.org/wiki/Piecewise
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11.2 Establishing the Merit Function 

 

As in the chapters before we restrict the optimization to the progressive front surface without taking 

into account the aberrations caused by the thick lens, as for example the oblique astigmatism. 

In [6] and [7] the authors give a general description how to optimize a progressive surface 

minimizing a merit function taking into account several different optical and physiological 

parameters. 

The design calculations of this publication follow the approach developed by J. Loos, G. Greiner and 

H.-P. Seidel [8]. We formulate the requirements for an appropriate front surface by the error 

functional 

 ( )  ∫ ( (     )
 

 
  (

     

 
      )

 )                   (1)     

Where 

* f(u, v)                   represents the front surface defined on a quadratic (u,v)-parameter range Ω 

*                       are the common symbols for the principal curvatures and the targeted   

                     mean curvature  

* g the area element    √    
 
   

 
    with    and     the first derivatives 

of f(u, v) 

 

* , β are the weight functions enforcing low astigmatism and small deviations from 

required mean curvature 

 

Multiplied by (n-1),  (  -   ) is the surface astigmatism and (     )/2 the mean power.  
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Thus, the designer has first to specify the desired distribution of the mean curvature 

      and of the weight functions  ,β and then to determine f(u,v) so, that the 

functional J(f) becomes minimal. 

The ideal power distribution would be to have horizontal isopower-lines, the power increasing 

consistently with the progression of the principal meridian from the FV to the NV part. Generally the 

optical engineer will choose higher values for   and β in the far and near vision regions as well as 

in the central progression than in the lens periphery. 

 

11.3 Minimizing the error functional 

 

The problem reminds physicists of the minimization of the action integral S, which can be solved 

using the Euler Lagrange equations. Here we will evaluate a numerical solution, as there is no way 

for an analytic expression of the solution. 

The functional (1) is well defined for functional surfaces  

 (   )  (     (   )) 

which can be differentiated continuously up to the order of two, i.e.  (   )     ( )  

Accordingly to the approach of Ritz-Galerkin we choose the subspace of   ( ) of bicubic tensor 

product B-splines as an approximate solution of the minimization problem: 

 (   )  ∑∑   

 

   ( )    

 

( )         ( ) 

with the control vertices     and the univariate cubic B-spline functions   . 

Now we have to determine the     so that   ( ) becomes minimal. 
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Introducing the mean curvature H and the Gaussian curvature G into (1) we obtain  

∫∫(   (    )    (       )
 )         

 ∫∫((    )                            
 )          (3) 

With 

         
(    

 )                (    
 )    

      ,      
           

 

       

the integrand can now be written as 

     (     )      (     )
      

where                         

                                                       =(           ) 

 

Thus, the integrand is a quadratic expression in the second derivatives of the surface function 

 (   )  the coefficients     and    depending exclusively on the first derivatives. If we could 

consider the first derivatives to be constant, the functional  ( ) would represent a quadratic 

functional. Minimizing a quadratic functional can be reduced to solving a linear system of equations. 

We will develop the linear equation system in paragraph 11.5. 

The analysis of the expressions of the arrays A and B calculated below shows that their derivatives 

with respect to    and     vanish for      and        As the boundary conditions of the 

problem require that in the lens center (   ) the first derivatives    and    are zero and as 

spectacle surfaces are rather flat, a functional depending only on the second derivatives could be a 

reasonable  approximation. 

The initial surface is the sphere with a radius which is the mean of the far vision (6 D) and near 

vision (8 D) sphere.  

Thus, we calculate  (   ) by iteration. For each new step the      and        are the results of 

the preceding iteration step and kept constant. Now the task is the minimization of a quadratic 

functional and the solution of the corresponding system of linear equations gives the improved 

values for the first derivatives for the next step until the process converges. This iterative solution 

method is known as the approximation with frozen first order derivatives.   
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11.4 The bicubic tensor product B-spline surface  

A uniform bicubic B-spline surface over the quadratic (u, v)- parameter region  

[-n     , n    ] x [-n     , n    ] is represented by 

  

 (   )  ∑ ∑    

(   )

   (   )

   ( )    

(   )

   (   )

( )      ( )        

 

    is the constant knot distance, the control vertices     are defined over the knots of the parameter 

grid,   ( )    ( ) is a tensor product B-spline, where   ( ) and   ( ) are univariate, uniform cubic 

B-splines.  

Each cubic B-spline    is a piecewise cubic polynomial with non-zero values over only 4 successive 

intervals. At the joints of the segments the polynomial pieces are continuous up to the second 

derivative. Starting from one B-spline the totality of basis splines can be obtained by simple 

translation by multiples of the knot distance.  

Thus, the representation of the functional surface is (     (   ))  

If we define the first univariate cubic B-spline between -2 and +2 with knot distance 1 (which we 

will call   ( ) ), we get 

 

| |           ( )  
 

 
    

 

 
 | |  

  1 | |           ( )=1/6 * (  | |))  

As the cubic tensor product B-spline is the product of two univariate cubic B-splines, any tensor 

product B-spline   ( )    ( ) will be non-zero over 16 square regions of the (u,v)-mesh. With this 

system of basis-splines any C2 tensor product spline surface can be represented. 
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11.5 Establishing the linear equation system (LES) 

 

In 11.3 we mentioned that minimizing a quadratic functional can be reduced to solving a system of 

linear equations. 

Applying the method of the frozen first derivatives we saw that we can consider approximately the 

merit function   ( ) as a quadratic functional  ( ) with    (           )  

 

 ( )  ∬(     (     )      (     )
     )                   ( )

   (   )    ( )     

 

With the representation of F by tensor product B-splines (2) the system of linear equations to solve 

has the following form 

 

∑ ∑   (            )            (     )      
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Calculating A and B using the expressions in (3) we obtain for the detailed linear equation system
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11.6 Optimization Method 

 

The computer optimization program in the Matlab language solving the LES of paragraph 11.5 has 

been established by Matthias Innmann, M. Sc.( computer science), University of Erlangen. 

The output of the program is a tensor product B-spline patch represented graphically either as a 3D 

surface plot or by isolines for the optical power and astigmatism of the surface. The necessary input 

variables are the design parameters         and β.  

In this special case the intention was to approximate the Varilux Comfort design given by the two 

patents US 5 270 745 and US 5 272 495 for the main meridian and US 5 488 442 for the surface 

characteristics. Fig 2 and Fig 3 in US 5 488 442 (see Fig 1 above) depict the isolines for the add 

power and the surface astigmatism of the Varilux Comfort geometry add 2. These 2 graphs 

representing a lens diameter of 60 mm have been evaluated on a 24 x 24 mm grid with steps of 2 

mm. Concerning the power distribution, all elements of the add matrix have been increased by 6 D, 

which takes into account the power in the far vision region. 

In order to start the optimization with a reasonable estimate for the grid values of   and    we used 

an ansatz of the type  

    
 

(        ) 
    

The same relation was established between   and the power. A rough first approximation of the 

constants gave C1 values around 3, C2 distinctly smaller than one and an exponent e of about 4. 

Now we started the calculations of the surface by adjusting the   values trying to reproduce the 

essential qualitative characteristics of Comfort, i.e. the isopower and isoastigmatism-lines. 

“Qualitative” means that no effort was invested to measure and to adjust the typical dimensions of 

the design, as for example the extension of the FV, NV and IV zones. The modification of the   –

matrix was done by hand and even though the first surface has already been close to the typical 

Comfort design, the final optimization was a tedious, long lasting process. A specific problem is the 

fact, that J(f) is a global criteria. 

The optimization tests showed, that the desired results were achieved by 
    

    
 ratios between 1/5 

and 1/25, depending on the characteristical details of the design, for example, if the isoastigmatism 

lines are extending more or less into the far vision part (see below). 
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Fig 2: initial  - matrix 

The initial approximate  -matrix (Fig 2) gives a design with poor far vision quality but low 

astigmatism in the lateral NV region, which has been corrected in the final matrix (Fig 3). 

Fig 3: optimized  -matrix 

We have to take into account that this way to work is more adapted to the improvement of an 

existing design but not appropriate to conceive a fundamentally new geometry. 
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For the creation of an entirely new design it seems recommendable to work with a graphical tool in 

order to have the possibility to model not only point by point, but also extended areas. So, the 

initial   and   matrices were converted into png files and these files were processed with the raster 

graphics editor GIMP. This way to work needs some practice, too, but provides valuable insight into 

the construction. For example it shows, that for the first steps it is sufficient to change the weights 

over extended areas. 

 

   .     

 

 Fig 4: PNG format of the  -matrix before and after processing 

 

Although the subjective visual information of the 2 images in Fig 4 is rather limited, it is easy to see 

that much effort had to be made to shift the aberrations from the far vision part into the lateral 

near vision region.  

If the selected [x, z]-range is [-24, 24]mm x [-24, 24]mm, the solution is calculated as 12x12 

tensor product B-spline patch for a uniform knot spacing k of 4 mm, and as 24x24 B-spline surface 

patch for a knot spacing of 2 mm, respectively. Including the boundary conditions for the surface in 

the zero point (( (   )      (   )      (   )    ) there are 15x15+3 respectively 27x27+3 

equations to be solved per iteration step.  
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The optimization was done using the 0.5 D isoastigmatism lines as criteria, for a fine tuning at least 

0.25 D steps are necessary. The numbers of the   –matrix have been adjusted locally, depending 

on the need to correct the initial design to come close to the target, a final smoothing process of all 

the 625 array elements has not been realized. So the results cannot represent the optimum design , 

so for example the astigmatism island in the upper center of the FV part ( see Fig 6 and 7) can 

certainly be reduced.   

The computation was done on a common laptop with an Intel®Core ™i7-3610QM CPU 2.3GHz and 

a main memory of 7.9 GB. The Matlab version used was R 2014a completed with the parallel 

computing toolbox for the accelerated calculation of the matrices of the linear equation system. 

 

For the knot distance k=4 convergence was achieved after 8 iteration steps with about 2.2 s/step. 

The corresponding values for k=2 are 7 iteration steps with about 10.7 s/step. The iteration was 

stopped, when the relative difference of the integral J(F) between 2 consecutive runs was <    . 

Fig 5 shows a typical graph for the evolution of the value J(F) per iteration step. 

 

 

 Fig 5: Iterative evolution of J(F)  
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11.7 Results and analysis  

                 

Fig 6: Power- and Astigmatism- Isolines for [-20, 20], k=4 and  
    

    
=1/25 

Fig 6 and 7 show the results of two optimization approaches with far vision power 6 D and add 2 D. 

Fig 6 represents a design, where 0.5 D line extends higher into the lateral FV-part than for the 

geometry in Fig 7 (which is a big difference with regard to the  -matrices). 

               

 

Fig 7: Power- and Astigmatism-Isolines for [-20, 20], k=4 and  
    

    
 =1/5 
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Both designs are distinguished by the geometry characteristics of the Comfort surface represented 

by patent US 5 488 442 (see Fig 1 of this chapter) and by patent US 5 270 745. 

 Asymmetrical design 

 The progression corridor and the near vision region follow the path of the converging eye 

 In the upper lens portion the isocylinder- and the isopower-lines are substantially horizontal 

 The power gradient of the surface has its maximum value on the principal meridian in the   

intermediate vision region 

 The power increase between the points +4 mm (fitting cross) and -8 mm corresponds to 

85% of the add power ( corresponding to an effective progression length of 12 mm)  

 The design provides extensive near and distance vision regions  

 The surface astigmatism has a maximum value of about the add power 

 The astigmatism gradient has a maximum value in the lateral portions of the intermediate 

region and is distinctly lower in the NV periphery 

 

 

 

 

Fig 8: Curves of constant ocular effort for a point of fixation at 1m 
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Based on measurements of the ocular effort (Fig 8) the surface has been designed with an elevated  

near vision zone, which reaches 85% of the add power only 12 mm below the fitting cross. The 

head position and the eye inclinations of the wearer, when reading, were more natural than with 

other designs.  

The position and extension of the zones for foveal vision, which had to be free from any perceptible 

imaging error, were determined with a measuring device registering the head and eye movements 

for different daily visual tasks (Fig 9). With the same method it could be confirmed that the lateral 

field of view for a progressive lens is determined less by the level of aberrations than by the 

gradient of aberrations. Correspondingly, the Comfort lens is distinguished by a low rate of change 

for power and astigmatism, which offers favorable conditions for the peripheral and dynamic vision. 

 

 

Fig 9: Apparatus for registering head- and eye movements 

 

 

The whole dimension of these physiological studies and their impact on the design characteristics is 

described in detail in [1], [2].  

The product was launched in Europe in 1993, in Asia and USA in 1994. It became the bestselling 

progressive brand ever and a Comfort lens adapted to the visual needs of the cyber era is still one 

of the cornerstones of the Essilor product range of today. 
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Annex : Matlab program for Minimizing the Error Functional 

%% global variables 
n = 525;                    % actually (n - 1) * 1000 
Df = 6;  
Dn = 8; 

  
xRange = [-24 24];            % x range in mm 
zRange = [-24 24];          % z range in mm 

  
kd = 2;                     % knot distance for BSpline in mm 
Ns = 2 * kd + 1;            % number of samples per knot interval 

  
alphaWeight = 1;             % scaling factor for alpha 
betaWeight = 5;         % scaling factor for beta 

  
fileAlpha = 'alpha.txt';    % file with alpha(u, v) 
fileBeta = 'beta.txt';      % file with beta(u, v) 
fileHsoll = 'Hsoll.txt';    % file with hsoll(u, v) 

  
isoLevelsAsti = 0:0.5:5;    % iso lines for astigmatism 
isoLevelsPow = 1.5:0.5:10;  % iso lines for optical power 

  
maxIter = 10;               % maximum number of iteration (since error difference 

will never be = 0) 
epsilon = 10e-9;           % epsilon for iteration 

  
visible = 1;                % 1: on, 0: off 
plotControlPoints = 1; 
fileOutput = 0; 
parallelComp = 1; 

  

  
%% initialize program 
p = gcp('nocreate'); 
if isempty(p) && parallelComp 
    parpool('local'); 
end 

  

  
%% place control points on initial surface 
rho = 2 * n / (Df + Dn); 

  
xSteps = (xRange(1, 1) - kd):kd:(xRange(1, 2) + kd); 
zSteps = (zRange(1, 1) - kd):kd:(zRange(1, 2) + kd); 

  
[Cx, Cz] = meshgrid(xSteps, zSteps); 
Cy = rho - sqrt(rho^2 - Cx.^2 - Cz.^2); 
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%% load constraints 
C = Constraints(fileAlpha, fileBeta, fileHsoll, xRange, zRange, n); 

  
 

Error = zeros(1, maxIter + 1); 

  

  
%% plots 
if visible == 1 
    h = figure; 
else 
    h = figure('visible', 'off'); 
end 

  
prevError = 0; 

  

  
%% iteration 
for iter = 1:maxIter+1     
    %% evaluate current surface 
    [fx, fz, fy] = B0Spline.evalSurf(kd, Ns, Cx, Cz, Cy); 

     
    hx = (max(fx) - min(fx)) / (size(fx, 2) - 1); 
    hz = (max(fz) - min(fz)) / (size(fz, 1) - 1); 

     
    %% create integrator only once (for performance issues) 
    I = Integrator(size(fy, 1), size(fy, 2), hx, hz); 

     

     
    %% find indices for boundary constraints  
    % (f(0,0) = 0, \nabla f(0,0) = 0) 

     
    idxI00 = floor(min(xRange) / (min(xRange) - max(xRange)) * size(fy, 2) + 1); 
    idxJ00 = floor(min(zRange) / (min(zRange) - max(zRange)) * size(fy, 1) + 1); 

     
    %% precomputed values 
    A = imresize(C.A, size(fy), 'bilinear'); 
    B = imresize(C.B, size(fy), 'bilinear'); 
    Hsoll = imresize(C.H, size(fy), 'bicubic'); 

     
    A = alphaWeight * A; 
    B = betaWeight * B; 

             
    %% compute curvatures 
    Fu = B0Spline.evalSurfDu(kd, Ns, Cx, Cz, Cy); 
    Fv = B0Spline.evalSurfDv(kd, Ns, Cx, Cz, Cy); 
    Fuu = B0Spline.evalSurfDuu(kd, Ns, Cx, Cz, Cy); 
    Fuv = B0Spline.evalSurfDuv(kd, Ns, Cx, Cz, Cy); 
    Fvv = B0Spline.evalSurfDvv(kd, Ns, Cx, Cz, Cy); 

  
    G = evalG(Fu, Fv); 
    H = evalH(Fu, Fv, Fuu, Fuv, Fvv, G); 
    K = evalK(Fuu, Fvv, Fuv, G); 
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    %% current error 
    E1 = 4 * A .* (H.^2 - K); 
    E2 = B .* (H - Hsoll).^2; 

 

 
 

    I1 = I.integrate(E1 .* G); 
    I2 = I.integrate(E2 .* G); 
    Error(iter:end) = I1 + I2; 

     
    errorDiff = abs(Error(iter) / prevError); 
    prevError = Error(iter); 

     
    subplot(2, 3, 1) 
    surf(fx, fz, fy, 'FaceColor', 'interp', 'EdgeColor', 'none') 
    if plotControlPoints 
        hold on 
        surf(Cx(2:end-1, 2:end-1), Cz(2:end-1, 2:end-1), Cy(2:end-1, 2:end-1),        

'FaceColor', 'None') 
        hold off 
    end 
    title('Surface') 
    xlabel('u') 
    ylabel('v') 
    axis square 

     
    subplot(2, 3, 2) 
    cont = contourf(fx, fz, H * n, isoLevelsPow); 
    title('Optical Power') 
    xlabel('u') 
    ylabel('v') 
    axis square 
    clabel(cont) 

     
    subplot(2, 3, 3) 
    contourf(fx, fz, K) 
    title('K: Gaussian Curvature') 
    xlabel('u') 
    ylabel('v') 
    axis square 

     
    subplot(2, 3, 4) 
    plot(Error); 
    xlabel('Iteration') 
    ylabel('Error') 
    title(strcat('Error: ', num2str(Error(iter)))) 

     
    subplot(2, 3, 5) 
    contourf(fx, fz, abs(H - Hsoll) * n) 
    title(strcat('|H - H_{soll}|: ', num2str(I2))) 
    xlabel('u') 
    ylabel('v') 
    axis square 
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    subplot(2, 3, 6) 
    cont = contourf(fx, fz, 2 * n * sqrt(H.^2 - K), isoLevelsAsti); 
    title(strcat('Astigmatism: ', num2str(I1))) 
    xlabel('u') 
    ylabel('v') 
    axis square 
    clabel(cont) 

 
    pause(0.01) 

     
    % save to file 
    if fileOutput 
        saveas(h, strcat('plot', num2str(iter), '.fig')); 
    end 

     
    % break iteration if maxIter is reached or  
    % error does not decrease any more 
    if iter == maxIter+1 || abs(errorDiff - 1) < epsilon 
        break; 
    end 

     
    tic 
    curTime = toc;     % for performance evaluation 

     

     
    %% set up Dx = b 
    % compute constant parts (for performance issues) 
    Fv2 = 1 + Fv.^2; 
    Fuv2 = 2 * Fu .* Fv; 
    Fu2 = 1 + Fu.^2; 

     
    ABG4 = (4 * A + B) ./ (4 * G.^5); 
    AG4 = 4 * A ./ G.^3; 

     
    BHG = B .* Hsoll ./ (2 * G.^2); 

     
    % set up matrix D and rhs b 
    length = size(Cx);   

     
    Fx = (fx - min(xRange)) / kd + 2; 
    Fz = (fz - min(zRange)) / kd + 2; 

     
    bPar = zeros(length); 
    dPar = zeros(length(2), length(1), length(2), length(1)); 

     
    % constraints for curvatures 
    parfor i = 1:length(2) 
        Fi = Fx - i; 

  
        Ni = B0Spline.B(Fi); 
        Niu = B0Spline.DB(Fi) / kd; 
        Niuu = B0Spline.DDB(Fi) / kd^2;         

              
        kStart = max(i - 3, 1); 
        kEnd = min(i + 3, length(2)); 
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        bSlice = zeros(length(1), 1); 
        dSlice = zeros(length(1), length(2), length(1)); 

  
        for j = 1:length(1) 
            Fj = Fz - j; 

  
            Nj = B0Spline.B(Fj); 
            Njv = B0Spline.DB(Fj) / kd; 

 

 
            Njvv = B0Spline.DDB(Fj) / kd^2; 

                                                 
            Njiuu = Nj * Niuu; 
            Njvvi = Njvv * Ni; 
            Njviu = Njv * Niu; 

             
            Hij = Fv2 .* Njiuu - Fuv2 .* Njviu + Fu2 .* Njvvi; 

             
            L = BHG .* Hij; 

                         
            bSlice(j) = I.integrate(L); 

             
            lStart = max(j - 3, 1); 
            lEnd = min(j + 3, length(1)); 

             
            for k = kStart:kEnd 
                Fk = Fx - k; 

  
                Nk = B0Spline.B(Fk); 
                Nku = B0Spline.DB(Fk) / kd; 
                Nkuu = B0Spline.DDB(Fk) / kd^2; 

                 
                for l = lStart:lEnd 
                    Fl = Fz - l; 

                    
                    Nl = B0Spline.B(Fl); 
                    Nlv = B0Spline.DB(Fl) / kd; 
                    Nlvv = B0Spline.DDB(Fl) / kd^2; 

                     
                    Nlkuu = Nl * Nkuu; 
                    Nlvvk = Nlvv * Nk; 
                    Nlvku = Nlv * Nku; 

                     
                    Hkl = Fv2 .* Nlkuu - Fuv2 .* Nlvku + Fu2 .* Nlvvk; 

                                         
                    K = ((Njiuu .* Nlvvk + Njvvi .* Nlkuu) / 2) - Njviu .* Nlvku; 

                     
                    Q = ABG4 .* Hij .* Hkl - AG4 .* K; 

  
                    dSlice(j, k, l) = I.integrate(Q); 
                end 
            end 
        end 
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        bPar(:, i) = bSlice; 
        dPar(i, :, :, :) = dSlice; 
    end 

     
    b = zeros(length(1) * length(2) + 3, 1); 
    b(1:length(1)*length(2), 1) = reshape(bPar, length(1) * length(2), 1); 

     
    D = zeros(length(1) * length(2) + 3, length(1) * length(2));  

        
    for i = 1:length(2) 

 
        Fi = Fx - i; 

  
        Ni = B0Spline.B(Fi); 
        Niu = B0Spline.DB(Fi) / kd; 

         
        kStart = max(i - 3, 1); 
        kEnd = min(i + 3, length(2)); 

              
        for j = 1:length(1) 
            Fj = Fz - j; 

  
            Nj = B0Spline.B(Fj); 
            Njv = B0Spline.DB(Fj) / kd; 

             
            Nij = Nj * Ni; 
            Niuj = Nj * Niu; 
            Nijv = Njv * Ni; 

             
            row = (i - 1) * length(1) + j; 

             
            D(end - 2, row) = Nij(idxJ00, idxI00); 
            D(end - 1, row) = Niuj(idxJ00, idxI00); 
            D(end, row) = Nijv(idxJ00, idxI00); 

             
            lStart = max(j - 3, 1); 
            lEnd = min(j + 3, length(1)); 

             
            for k = kStart:kEnd 
                col = (k - 1) * length(1); 

                 
                for l = lStart:lEnd 
                    D(row, col + l) = dPar(i, j, k, l); 
                end 
            end 
        end 
    end 
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x = D \ b; 

  
    Cy = reshape(x, size(Cy)); 

    
    elapsedTime = toc - curTime; 

     
    display(strcat('iteration: ', num2str(iter), ', time: ', 

num2str(elapsedTime), 's', ', errorDiff: ', num2str(errorDiff), ', condition: ', 

num2str(cond(D), '%e'))); 
end 

  

 

 

 

 

 

 


