
Seite 1

11. Varilux Comfort, natural vision by

large viewing zones and a soft periphery

A new design generation

From about 1980 on, after the years of the Varilux invention and market introduction, the different

designs developed by the Essilor competitors made the new spectacle lens concept increasingly

popular. These designs could be roughly divided in two type classes. The first type of surface was

the “hard design”, characterized by large viewing zones for far and near vision, a rather short

power increase and moderate to strong lateral astigmatism. The second lens type was the “soft

progressive design” distinguished by a longer progression channel with smaller FV and NV fields and

low aberrations in the periphery. The “hard” type was well adapted for static viewing conditions, for

example reading, whereas the “soft” type was very performant for dynamic viewing situations as

head and eye movements.

To overcome these boundaries and to develop a lens combining the advantages of both types

allowing the wearer to see ”almost naturally” was the challenge for a new lens generation.

The development of a power profile, which minimizes the physiological effort of lowering the head

and the eyes when reading, is described by Christian Miège and Claude Pedrono in a scientific paper

[1] and in the patents US 5 270 745 and US 5 272 495. They propose a principal meridian

consisting substantially of three straight line segments: the first segment is extending vertically

from the top of the lens to the fitting center, the second segment is extending obliquely from the

fitting center to the point where the power increase reaches 85% of the add power, and the third

segment is starting from this point until the bottom of the lens passing through the near vision

reference point [2].

In the US patent 5 488 442 the inventors C. Harsigny, C. Miege, J.P. Chauveau and F. Asbahs

specify the characteristics of the surface design which combines the rather short meridian of

US 5 270 745 with a soft lens periphery. They conclude that power and surface cylinder gradients

have a primordial importance for the quality of extra-foveal and dynamic vision. The patent includes

quantitative conditions for the location and the maximum value of the gradients.

Seite 2

Fig 1: Patent US 5 488 442, Varilux Comfort add 2

Finally, at this time a powerful optimization tool was ready for a first test: the design loop [3]. This

notion specifies an iterative process improving step by step the geometry of the lens taking into

account the feedback of clinical trials.

For the calculation of such a new design, the mathematical tools used until now were not flexible

enough, but in the 1980’s a new method allowing to calculate freeform surfaces made its entry into

the field of spectacle lens computation (for example [4]).

11.1 Freeform surfaces built with splines

The designs in the foregoing chapters were calculated following the concept of a central backbone,

the main meridian, and orthogonal surface sections affixed to it. The orthogonal sections were

given by rather simple functions with a limited number of parameters. For Varilux 2 as well as for

Progressif R, after taking into account the condition that the meridian is an umbilic, only one

parameter remains for the modeling of the orthogonal section. Consequently the surfaces

generated by these sections were far from representing the optimum geometry for the

minimization of aberrations. In order to bypass this severe restriction, the Varilux 2 design in the

periphery departs from the exact conic section geometry in constructing secondary umbilics and

isoprismatic lines.

Seite 3

What the designer is looking for, is a mathematical method which provides the freedom to compute

a general aspheric surface directly according to the specifications, independent from a limited

number of variables and the corresponding number of conditions to define them.

Freeform surfaces were and are customary in the shipbuilding, aircraft and automotive industry and

the physical splines, for example wooden planks bent around pegs laid out on the floor, were used

already for designing during World War Two. Isaac Jacob Schoenberg introduced the notion of the

mathematical spline. You will find many articles about the history of splines on the internet. In the

late 1950’s and in the early 1960’s Citroen, Renault and General Motors were modeling car bodies

using splines or similar techniques. Today computer aided design is applied for construction work in

all technical branches. And this is by far not all, …. if you watched the liquid metal cyborg in

“Judgement Day” you saw splines in action.

A simple definition is the following one:

A spline of degree k is a function that is piecewise-defined by polynomial functions of degree k, and

at the places where the polynomial pieces connect (which are known as knots) it is (k-1) times

continuously differentiable

In the optimization process described here we will consider uniform cubic splines i.e. polynomials of

degree 3 with knots, which are equally spaced. Any spline function of degree 3 defined over a

uniform knot sequence can be represented as a linear combination of uniform cubic Basis splines

(B-splines). Cubic B-splines have a non-zero value (its ”support”) over only 4 successive segments

and at the knots the cubic spline, its first and second derivative are continuous (C2 continuity). And

this characteristic is exactly the minimum requirement we need, if we want to describe and analyze

the curvature and the astigmatism of an optical surface

The optimization method to create the surface will be an approximation technique: the surface shall

pass as close as possible the given control vertices. These control points represent the surface or

one of the surface characteristics which we want to realize. The advantage using B-splines is local

control, which mean, that altering the position of a data point changes the surface only in the

neighborhood of this point (if you will try to optimize a progressive surface you will find this is still

enough work to do).

There are many text-books introducing to splines in geometric modeling, the book “Splines for use

in Computer Graphics & Geometric Modeling”, written by the “Killer B’s” offers good explanations

and a clear structure [5].

http://en.wikipedia.org/wiki/Function_%28mathematics%29
http://en.wikipedia.org/wiki/Piecewise

Seite 4

11.2 Establishing the Merit Function

As in the chapters before we restrict the optimization to the progressive front surface without taking

into account the aberrations caused by the thick lens, as for example the oblique astigmatism.

In [6] and [7] the authors give a general description how to optimize a progressive surface

minimizing a merit function taking into account several different optical and physiological

parameters.

The design calculations of this publication follow the approach developed by J. Loos, G. Greiner and

H.-P. Seidel [8]. We formulate the requirements for an appropriate front surface by the error

functional

 () ∫ (()

 (

)

) (1)

Where

* f(u, v) represents the front surface defined on a quadratic (u,v)-parameter range Ω

* are the common symbols for the principal curvatures and the targeted

 mean curvature

* g the area element √

 with and the first derivatives

of f(u, v)

* , β are the weight functions enforcing low astigmatism and small deviations from

required mean curvature

Multiplied by (n-1), (-) is the surface astigmatism and ()/2 the mean power.

Seite 5

Thus, the designer has first to specify the desired distribution of the mean curvature

 and of the weight functions ,β and then to determine f(u,v) so, that the

functional J(f) becomes minimal.

The ideal power distribution would be to have horizontal isopower-lines, the power increasing

consistently with the progression of the principal meridian from the FV to the NV part. Generally the

optical engineer will choose higher values for and β in the far and near vision regions as well as

in the central progression than in the lens periphery.

11.3 Minimizing the error functional

The problem reminds physicists of the minimization of the action integral S, which can be solved

using the Euler Lagrange equations. Here we will evaluate a numerical solution, as there is no way

for an analytic expression of the solution.

The functional (1) is well defined for functional surfaces

 () (())

which can be differentiated continuously up to the order of two, i.e. () ()

Accordingly to the approach of Ritz-Galerkin we choose the subspace of () of bicubic tensor

product B-splines as an approximate solution of the minimization problem:

 () ∑∑

 ()

() ()

with the control vertices and the univariate cubic B-spline functions .

Now we have to determine the so that () becomes minimal.

Seite 6

Introducing the mean curvature H and the Gaussian curvature G into (1) we obtain

∫∫(() ()
)

 ∫∫(()
) (3)

With

(

) (
)

 ,

the integrand can now be written as

 () ()

where

 =()

Thus, the integrand is a quadratic expression in the second derivatives of the surface function

 () the coefficients and depending exclusively on the first derivatives. If we could

consider the first derivatives to be constant, the functional () would represent a quadratic

functional. Minimizing a quadratic functional can be reduced to solving a linear system of equations.

We will develop the linear equation system in paragraph 11.5.

The analysis of the expressions of the arrays A and B calculated below shows that their derivatives

with respect to and vanish for and As the boundary conditions of the

problem require that in the lens center () the first derivatives and are zero and as

spectacle surfaces are rather flat, a functional depending only on the second derivatives could be a

reasonable approximation.

The initial surface is the sphere with a radius which is the mean of the far vision (6 D) and near

vision (8 D) sphere.

Thus, we calculate () by iteration. For each new step the and are the results of

the preceding iteration step and kept constant. Now the task is the minimization of a quadratic

functional and the solution of the corresponding system of linear equations gives the improved

values for the first derivatives for the next step until the process converges. This iterative solution

method is known as the approximation with frozen first order derivatives.

Seite 7

11.4 The bicubic tensor product B-spline surface

A uniform bicubic B-spline surface over the quadratic (u, v)- parameter region

[-n , n] x [-n , n] is represented by

 () ∑ ∑

()

 ()

 ()

()

 ()

() ()

 is the constant knot distance, the control vertices are defined over the knots of the parameter

grid, () () is a tensor product B-spline, where () and () are univariate, uniform cubic

B-splines.

Each cubic B-spline is a piecewise cubic polynomial with non-zero values over only 4 successive

intervals. At the joints of the segments the polynomial pieces are continuous up to the second

derivative. Starting from one B-spline the totality of basis splines can be obtained by simple

translation by multiples of the knot distance.

Thus, the representation of the functional surface is (())

If we define the first univariate cubic B-spline between -2 and +2 with knot distance 1 (which we

will call ()), we get

| | ()

 | |

 1 | | ()=1/6 * (| |))

As the cubic tensor product B-spline is the product of two univariate cubic B-splines, any tensor

product B-spline () () will be non-zero over 16 square regions of the (u,v)-mesh. With this

system of basis-splines any C2 tensor product spline surface can be represented.

Seite 8

11.5 Establishing the linear equation system (LES)

In 11.3 we mentioned that minimizing a quadratic functional can be reduced to solving a system of

linear equations.

Applying the method of the frozen first derivatives we saw that we can consider approximately the

merit function () as a quadratic functional () with ()

 () ∬(() ()
) ()

 () ()

With the representation of F by tensor product B-splines (2) the system of linear equations to solve

has the following form

∑ ∑ () ()

Seite 9

Calculating A and B using the expressions in (3) we obtain for the detailed linear equation system

∬ ()

 (u,v)=

{

∑∑

 [

 () () () () (() () () () () () () ())

 () () () () (() () () () () () () ())

 (() () () () () () () ()) () () () ()

]

 (() () () () () ()) }

 √(

)

 ()
 (

)

 () () () ()

 ((
)(

)

)

 () ()()

 () () () ()

Seite 10

11.6 Optimization Method

The computer optimization program in the Matlab language solving the LES of paragraph 11.5 has

been established by Matthias Innmann, M. Sc.(computer science), University of Erlangen.

The output of the program is a tensor product B-spline patch represented graphically either as a 3D

surface plot or by isolines for the optical power and astigmatism of the surface. The necessary input

variables are the design parameters and β.

In this special case the intention was to approximate the Varilux Comfort design given by the two

patents US 5 270 745 and US 5 272 495 for the main meridian and US 5 488 442 for the surface

characteristics. Fig 2 and Fig 3 in US 5 488 442 (see Fig 1 above) depict the isolines for the add

power and the surface astigmatism of the Varilux Comfort geometry add 2. These 2 graphs

representing a lens diameter of 60 mm have been evaluated on a 24 x 24 mm grid with steps of 2

mm. Concerning the power distribution, all elements of the add matrix have been increased by 6 D,

which takes into account the power in the far vision region.

In order to start the optimization with a reasonable estimate for the grid values of and we used

an ansatz of the type

()

The same relation was established between and the power. A rough first approximation of the

constants gave C1 values around 3, C2 distinctly smaller than one and an exponent e of about 4.

Now we started the calculations of the surface by adjusting the values trying to reproduce the

essential qualitative characteristics of Comfort, i.e. the isopower and isoastigmatism-lines.

“Qualitative” means that no effort was invested to measure and to adjust the typical dimensions of

the design, as for example the extension of the FV, NV and IV zones. The modification of the –

matrix was done by hand and even though the first surface has already been close to the typical

Comfort design, the final optimization was a tedious, long lasting process. A specific problem is the

fact, that J(f) is a global criteria.

The optimization tests showed, that the desired results were achieved by

 ratios between 1/5

and 1/25, depending on the characteristical details of the design, for example, if the isoastigmatism

lines are extending more or less into the far vision part (see below).

Seite 11

Fig 2: initial - matrix

The initial approximate -matrix (Fig 2) gives a design with poor far vision quality but low

astigmatism in the lateral NV region, which has been corrected in the final matrix (Fig 3).

Fig 3: optimized -matrix

We have to take into account that this way to work is more adapted to the improvement of an

existing design but not appropriate to conceive a fundamentally new geometry.

Seite 12

For the creation of an entirely new design it seems recommendable to work with a graphical tool in

order to have the possibility to model not only point by point, but also extended areas. So, the

initial and matrices were converted into png files and these files were processed with the raster

graphics editor GIMP. This way to work needs some practice, too, but provides valuable insight into

the construction. For example it shows, that for the first steps it is sufficient to change the weights

over extended areas.

 .

 Fig 4: PNG format of the -matrix before and after processing

Although the subjective visual information of the 2 images in Fig 4 is rather limited, it is easy to see

that much effort had to be made to shift the aberrations from the far vision part into the lateral

near vision region.

If the selected [x, z]-range is [-24, 24]mm x [-24, 24]mm, the solution is calculated as 12x12

tensor product B-spline patch for a uniform knot spacing k of 4 mm, and as 24x24 B-spline surface

patch for a knot spacing of 2 mm, respectively. Including the boundary conditions for the surface in

the zero point ((() () ()) there are 15x15+3 respectively 27x27+3

equations to be solved per iteration step.

Seite 13

The optimization was done using the 0.5 D isoastigmatism lines as criteria, for a fine tuning at least

0.25 D steps are necessary. The numbers of the –matrix have been adjusted locally, depending

on the need to correct the initial design to come close to the target, a final smoothing process of all

the 625 array elements has not been realized. So the results cannot represent the optimum design ,

so for example the astigmatism island in the upper center of the FV part (see Fig 6 and 7) can

certainly be reduced.

The computation was done on a common laptop with an Intel®Core ™i7-3610QM CPU 2.3GHz and

a main memory of 7.9 GB. The Matlab version used was R 2014a completed with the parallel

computing toolbox for the accelerated calculation of the matrices of the linear equation system.

For the knot distance k=4 convergence was achieved after 8 iteration steps with about 2.2 s/step.

The corresponding values for k=2 are 7 iteration steps with about 10.7 s/step. The iteration was

stopped, when the relative difference of the integral J(F) between 2 consecutive runs was < .

Fig 5 shows a typical graph for the evolution of the value J(F) per iteration step.

 Fig 5: Iterative evolution of J(F)

Seite 14

11.7 Results and analysis

Fig 6: Power- and Astigmatism- Isolines for [-20, 20], k=4 and

=1/25

Fig 6 and 7 show the results of two optimization approaches with far vision power 6 D and add 2 D.

Fig 6 represents a design, where 0.5 D line extends higher into the lateral FV-part than for the

geometry in Fig 7 (which is a big difference with regard to the -matrices).

Fig 7: Power- and Astigmatism-Isolines for [-20, 20], k=4 and

 =1/5

Seite 15

Both designs are distinguished by the geometry characteristics of the Comfort surface represented

by patent US 5 488 442 (see Fig 1 of this chapter) and by patent US 5 270 745.

 Asymmetrical design

 The progression corridor and the near vision region follow the path of the converging eye

 In the upper lens portion the isocylinder- and the isopower-lines are substantially horizontal

 The power gradient of the surface has its maximum value on the principal meridian in the

intermediate vision region

 The power increase between the points +4 mm (fitting cross) and -8 mm corresponds to

85% of the add power (corresponding to an effective progression length of 12 mm)

 The design provides extensive near and distance vision regions

 The surface astigmatism has a maximum value of about the add power

 The astigmatism gradient has a maximum value in the lateral portions of the intermediate

region and is distinctly lower in the NV periphery

Fig 8: Curves of constant ocular effort for a point of fixation at 1m

Seite 16

Based on measurements of the ocular effort (Fig 8) the surface has been designed with an elevated

near vision zone, which reaches 85% of the add power only 12 mm below the fitting cross. The

head position and the eye inclinations of the wearer, when reading, were more natural than with

other designs.

The position and extension of the zones for foveal vision, which had to be free from any perceptible

imaging error, were determined with a measuring device registering the head and eye movements

for different daily visual tasks (Fig 9). With the same method it could be confirmed that the lateral

field of view for a progressive lens is determined less by the level of aberrations than by the

gradient of aberrations. Correspondingly, the Comfort lens is distinguished by a low rate of change

for power and astigmatism, which offers favorable conditions for the peripheral and dynamic vision.

Fig 9: Apparatus for registering head- and eye movements

The whole dimension of these physiological studies and their impact on the design characteristics is

described in detail in [1], [2].

The product was launched in Europe in 1993, in Asia and USA in 1994. It became the bestselling

progressive brand ever and a Comfort lens adapted to the visual needs of the cyber era is still one

of the cornerstones of the Essilor product range of today.

Seite 17

References

1. Christian Miège, Claude Pedrono: Varilux Comfort: the physiological concepts on which this

new design is based. Optometriste, vol. 15, no. 5, 1993 and Optical Prism, oct 1993

2. Werner Köppen: Varilux Comfort. Deutsche Optikerzeitung, no.9, 1993

3. Jean-Louis Mercier, Christian Miège, Gilles Le Saux, Jean-Pierre Chauveau: The design loop

for progressive lenses. Points de vue, no.34, spring 1996

4. Gerhard Fürter, Hans Lahres: Multifocal spectacle lens with a dioptric power varying

progressively between different zones of vision. Patent US 4 606 622

5. Richard H. Bartels, John C. Beatty, Brian A. Barsky: An introduction to splines in computer

graphics and geometric modeling. Morgan Kaufmann Publishers Inc., 1987

6. P. Allione, F. Ahsbahs, G.Le Saux: Application of optimization in computer-aided ophthalmic

lens design. SPIE, vol. 3737,138-148

7. Eric F. Barkan, David H. Sklar: Method for improving progressive lens design and resulting

article. Patent US 4 838 675

8. Joachim Loos, Günther Greiner, Hans-Peter Seidel: A variational approach to progressive

lens design. Computer-Aided Design, vol. 30, no. 8, 1988

Seite 18

Annex : Matlab program for Minimizing the Error Functional

%% global variables
n = 525; % actually (n - 1) * 1000
Df = 6;
Dn = 8;

xRange = [-24 24]; % x range in mm
zRange = [-24 24]; % z range in mm

kd = 2; % knot distance for BSpline in mm
Ns = 2 * kd + 1; % number of samples per knot interval

alphaWeight = 1; % scaling factor for alpha
betaWeight = 5; % scaling factor for beta

fileAlpha = 'alpha.txt'; % file with alpha(u, v)
fileBeta = 'beta.txt'; % file with beta(u, v)
fileHsoll = 'Hsoll.txt'; % file with hsoll(u, v)

isoLevelsAsti = 0:0.5:5; % iso lines for astigmatism
isoLevelsPow = 1.5:0.5:10; % iso lines for optical power

maxIter = 10; % maximum number of iteration (since error difference

will never be = 0)
epsilon = 10e-9; % epsilon for iteration

visible = 1; % 1: on, 0: off
plotControlPoints = 1;
fileOutput = 0;
parallelComp = 1;

%% initialize program
p = gcp('nocreate');
if isempty(p) && parallelComp
 parpool('local');
end

%% place control points on initial surface
rho = 2 * n / (Df + Dn);

xSteps = (xRange(1, 1) - kd):kd:(xRange(1, 2) + kd);
zSteps = (zRange(1, 1) - kd):kd:(zRange(1, 2) + kd);

[Cx, Cz] = meshgrid(xSteps, zSteps);
Cy = rho - sqrt(rho^2 - Cx.^2 - Cz.^2);

Seite 19

%% load constraints
C = Constraints(fileAlpha, fileBeta, fileHsoll, xRange, zRange, n);

Error = zeros(1, maxIter + 1);

%% plots
if visible == 1
 h = figure;
else
 h = figure('visible', 'off');
end

prevError = 0;

%% iteration
for iter = 1:maxIter+1
 %% evaluate current surface
 [fx, fz, fy] = B0Spline.evalSurf(kd, Ns, Cx, Cz, Cy);

 hx = (max(fx) - min(fx)) / (size(fx, 2) - 1);
 hz = (max(fz) - min(fz)) / (size(fz, 1) - 1);

 %% create integrator only once (for performance issues)
 I = Integrator(size(fy, 1), size(fy, 2), hx, hz);

 %% find indices for boundary constraints
 % (f(0,0) = 0, \nabla f(0,0) = 0)

 idxI00 = floor(min(xRange) / (min(xRange) - max(xRange)) * size(fy, 2) + 1);
 idxJ00 = floor(min(zRange) / (min(zRange) - max(zRange)) * size(fy, 1) + 1);

 %% precomputed values
 A = imresize(C.A, size(fy), 'bilinear');
 B = imresize(C.B, size(fy), 'bilinear');
 Hsoll = imresize(C.H, size(fy), 'bicubic');

 A = alphaWeight * A;
 B = betaWeight * B;

 %% compute curvatures
 Fu = B0Spline.evalSurfDu(kd, Ns, Cx, Cz, Cy);
 Fv = B0Spline.evalSurfDv(kd, Ns, Cx, Cz, Cy);
 Fuu = B0Spline.evalSurfDuu(kd, Ns, Cx, Cz, Cy);
 Fuv = B0Spline.evalSurfDuv(kd, Ns, Cx, Cz, Cy);
 Fvv = B0Spline.evalSurfDvv(kd, Ns, Cx, Cz, Cy);

 G = evalG(Fu, Fv);
 H = evalH(Fu, Fv, Fuu, Fuv, Fvv, G);
 K = evalK(Fuu, Fvv, Fuv, G);

Seite 20

 %% current error
 E1 = 4 * A .* (H.^2 - K);
 E2 = B .* (H - Hsoll).^2;

 I1 = I.integrate(E1 .* G);
 I2 = I.integrate(E2 .* G);
 Error(iter:end) = I1 + I2;

 errorDiff = abs(Error(iter) / prevError);
 prevError = Error(iter);

 subplot(2, 3, 1)
 surf(fx, fz, fy, 'FaceColor', 'interp', 'EdgeColor', 'none')
 if plotControlPoints
 hold on
 surf(Cx(2:end-1, 2:end-1), Cz(2:end-1, 2:end-1), Cy(2:end-1, 2:end-1),

'FaceColor', 'None')
 hold off
 end
 title('Surface')
 xlabel('u')
 ylabel('v')
 axis square

 subplot(2, 3, 2)
 cont = contourf(fx, fz, H * n, isoLevelsPow);
 title('Optical Power')
 xlabel('u')
 ylabel('v')
 axis square
 clabel(cont)

 subplot(2, 3, 3)
 contourf(fx, fz, K)
 title('K: Gaussian Curvature')
 xlabel('u')
 ylabel('v')
 axis square

 subplot(2, 3, 4)
 plot(Error);
 xlabel('Iteration')
 ylabel('Error')
 title(strcat('Error: ', num2str(Error(iter))))

 subplot(2, 3, 5)
 contourf(fx, fz, abs(H - Hsoll) * n)
 title(strcat('|H - H_{soll}|: ', num2str(I2)))
 xlabel('u')
 ylabel('v')
 axis square

Seite 21

 subplot(2, 3, 6)
 cont = contourf(fx, fz, 2 * n * sqrt(H.^2 - K), isoLevelsAsti);
 title(strcat('Astigmatism: ', num2str(I1)))
 xlabel('u')
 ylabel('v')
 axis square
 clabel(cont)

 pause(0.01)

 % save to file
 if fileOutput
 saveas(h, strcat('plot', num2str(iter), '.fig'));
 end

 % break iteration if maxIter is reached or
 % error does not decrease any more
 if iter == maxIter+1 || abs(errorDiff - 1) < epsilon
 break;
 end

 tic
 curTime = toc; % for performance evaluation

 %% set up Dx = b
 % compute constant parts (for performance issues)
 Fv2 = 1 + Fv.^2;
 Fuv2 = 2 * Fu .* Fv;
 Fu2 = 1 + Fu.^2;

 ABG4 = (4 * A + B) ./ (4 * G.^5);
 AG4 = 4 * A ./ G.^3;

 BHG = B .* Hsoll ./ (2 * G.^2);

 % set up matrix D and rhs b
 length = size(Cx);

 Fx = (fx - min(xRange)) / kd + 2;
 Fz = (fz - min(zRange)) / kd + 2;

 bPar = zeros(length);
 dPar = zeros(length(2), length(1), length(2), length(1));

 % constraints for curvatures
 parfor i = 1:length(2)
 Fi = Fx - i;

 Ni = B0Spline.B(Fi);
 Niu = B0Spline.DB(Fi) / kd;
 Niuu = B0Spline.DDB(Fi) / kd^2;

 kStart = max(i - 3, 1);
 kEnd = min(i + 3, length(2));

Seite 22

 bSlice = zeros(length(1), 1);
 dSlice = zeros(length(1), length(2), length(1));

 for j = 1:length(1)
 Fj = Fz - j;

 Nj = B0Spline.B(Fj);
 Njv = B0Spline.DB(Fj) / kd;

 Njvv = B0Spline.DDB(Fj) / kd^2;

 Njiuu = Nj * Niuu;
 Njvvi = Njvv * Ni;
 Njviu = Njv * Niu;

 Hij = Fv2 .* Njiuu - Fuv2 .* Njviu + Fu2 .* Njvvi;

 L = BHG .* Hij;

 bSlice(j) = I.integrate(L);

 lStart = max(j - 3, 1);
 lEnd = min(j + 3, length(1));

 for k = kStart:kEnd
 Fk = Fx - k;

 Nk = B0Spline.B(Fk);
 Nku = B0Spline.DB(Fk) / kd;
 Nkuu = B0Spline.DDB(Fk) / kd^2;

 for l = lStart:lEnd
 Fl = Fz - l;

 Nl = B0Spline.B(Fl);
 Nlv = B0Spline.DB(Fl) / kd;
 Nlvv = B0Spline.DDB(Fl) / kd^2;

 Nlkuu = Nl * Nkuu;
 Nlvvk = Nlvv * Nk;
 Nlvku = Nlv * Nku;

 Hkl = Fv2 .* Nlkuu - Fuv2 .* Nlvku + Fu2 .* Nlvvk;

 K = ((Njiuu .* Nlvvk + Njvvi .* Nlkuu) / 2) - Njviu .* Nlvku;

 Q = ABG4 .* Hij .* Hkl - AG4 .* K;

 dSlice(j, k, l) = I.integrate(Q);
 end
 end
 end

Seite 23

 bPar(:, i) = bSlice;
 dPar(i, :, :, :) = dSlice;
 end

 b = zeros(length(1) * length(2) + 3, 1);
 b(1:length(1)*length(2), 1) = reshape(bPar, length(1) * length(2), 1);

 D = zeros(length(1) * length(2) + 3, length(1) * length(2));

 for i = 1:length(2)

 Fi = Fx - i;

 Ni = B0Spline.B(Fi);
 Niu = B0Spline.DB(Fi) / kd;

 kStart = max(i - 3, 1);
 kEnd = min(i + 3, length(2));

 for j = 1:length(1)
 Fj = Fz - j;

 Nj = B0Spline.B(Fj);
 Njv = B0Spline.DB(Fj) / kd;

 Nij = Nj * Ni;
 Niuj = Nj * Niu;
 Nijv = Njv * Ni;

 row = (i - 1) * length(1) + j;

 D(end - 2, row) = Nij(idxJ00, idxI00);
 D(end - 1, row) = Niuj(idxJ00, idxI00);
 D(end, row) = Nijv(idxJ00, idxI00);

 lStart = max(j - 3, 1);
 lEnd = min(j + 3, length(1));

 for k = kStart:kEnd
 col = (k - 1) * length(1);

 for l = lStart:lEnd
 D(row, col + l) = dPar(i, j, k, l);
 end
 end
 end
 end

Seite 24

x = D \ b;

 Cy = reshape(x, size(Cy));

 elapsedTime = toc - curTime;

 display(strcat('iteration: ', num2str(iter), ', time: ',

num2str(elapsedTime), 's', ', errorDiff: ', num2str(errorDiff), ', condition: ',

num2str(cond(D), '%e')));
end

